## Суперконденсаторы. Повышение срока службы и энергетической плотности

И. Богуш<sup>1</sup>, Н. Плуготаренко, к. т. н.<sup>2</sup>, Т. Мясоедова, к. т. н.<sup>3</sup>

УДК 621.37 | ВАК 2.2.8

Электроника не стоит на месте, и с каждым днем все больше становится очевидным, что традиционные батареи не могут удовлетворить потребности современных электронных устройств. В связи с этим, сегодня активно используются суперконденсаторы, которые обладают высокой энергетической плотностью и длительным сроком службы. Однако процессы старения электродных материалов создают значительные проблемы для долговременной работы и стабильности суперконденсаторов. Решение этой проблемы заключается во всестороннем понимании механизмов, лежащих в основе старения. В статье рассматривается методика исследования процессов старения в кремний-углеродных электродах, которая позволяет лучше понять механизмы деградации, а также определить ограничения эксплуатационных характеристик.

уперконденсаторы стали многообещающей технологией накопления энергии, сокращающей разрыв между традиционными конденсаторами и батареями. Среди различных электродных материалов, используемых в суперконденсаторах, кремний-углеродные материалы привлекли значительное внимание благодаря их высокой плотности энергии, циклической стабильности и превосходной электропроводности [1–3]. Однако, как и любое другое устройство для хранения энергии, суперконденсаторы со временем подвержены старению и деградации, что влияет на их производительность и общий срок службы.

Понимание особенностей старения электродов имеет решающее значение для разработки и оптимизации конструкций суперконденсаторов, а также играет ключевую роль в оценке долговечности, сохранения емкости

- <sup>1</sup> Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения, кафедра техносферной безопасности и химии, аспирант, inlys@sfedu.ru.
- <sup>2</sup> Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения, кафедра техносферной безопасности и химии, заведующий кафедрой, plugotarenko@mail.ru.
- <sup>3</sup> Южный федеральный университет, Институт нанотехнологий, электроники и приборостроения, ведущий научный сотрудник, tnmyasoedova@sfedu.ru.

и механизмов деградации. Для определения процессов старения электродов в литературе были предложены и использованы различные методы, каждый из которых позволяет получить уникальное представление о происходящих процессах деградации.

Так в работах [4–6] для изучения процессов старения были использованы методы *in situ и operando*, которые основаны на рамановской и рентгеновской фотоэлектронной спектроскопии, а также включают в себя атомно-силовую и сканирующую электронную микроскопии. Данные методы позволяют изучить изменения, которые происходят в материале или системе с течением времени, не нарушая и не прерывая сам процесс. Методы *in situ* предполагают наблюдение за материалом в реалистичных условиях, в то время как методы *operando* контролируют материал во время реальной работы или при воздействии определенных раздражителей.

Ряд авторов [7–10] используют классические методы, такие как **циклическая вольтамперометрия, гальваностатическое циклирование и измерения сохранения емкости**, для исследования механизмов старения и деградации. Это позволяет определить влияние старения на электрохимические характеристики.

Другим более наглядным и информативным методом является метод электрохимической импедансометрии (ЭИС) [11–14]. Основной принцип метода ЭИС заключается в подаче тока и напряжения фиксированной частоты на электрод при одновременном получении



**Рис. 1.** Блок-схема исследования процесса старения кремний-углеродных электродов для суперконденсаторов



### **Рис. 2.** Модель эквивалентной схемы для интерпретации данных ЭИС кремнийсодержащих электродов

соответствующей амплитудной характеристики тока на заданной частоте. Как правило, ответ иллюстрируется с помощью сложного графика, который представляет собой графики Боде и Найквиста.

Среди этих представлений график Найквиста наиболее интересен, он помогает визуализировать электрохимические процессы и интерпретировать полученные спектры с использованием моделей эквивалентных схем (ЭС). Данный метод позволяет выявить взаимосвязь между параметрами импеданса и скоростью старения.

Так, авторами в работе [15] кремний-углеродные электроды были исследованы методом электрохимической импедансометрии, схема процесса исследования представлена на рис. 1.

В результате, было обнаружено, что в процессе эксплуатации кремний-углеродных электродов наблюдаются следующие изменения в спектрах ЭИС: перемещение вдоль реальной оси, наклон низкочастотной части и появление индуктивности.

Дальнейшее моделирование спектров импеданса с помощью модели эквивалентных схем, представленной на рис. 2, показало, что кремний-углеродные электроды обладают двумя типами пор: транспортными и порами хранения.

Представленная схема состоит из эквивалентного последовательного сопротивления (Rs), которое отвечает за определение как ионного сопротивления электролита, так и электрического сопротивления внутри частиц, возникающего в результате образования пористой структуры внутри электрода суперконденсатора.

Для моделирования ЭИС в диапазоне промежуточных частот используются два компонента: сопротивление переноса заряда (*Rdl*) и элемент постоянной фазы (*Cdl*), характеризующий емкость двойного слоя.

Низкочастотная область спектра определяется наличием открытых элементов Варбурга. Эти элементы включают компонент Wt, который отвечает за сопротивление (Wt-Rt) и емкость (Wt-Ct) транспортных пор, а также элемент Ws, учитывающий сопротивление (Ws-Rs) и емкость (Ws-Cs), связанные с порами хранения.

Анализ параметров эквивалентных схем показал, что основные изменения происходят в элементах, отвечающих за сопротивление и емкость пор хранения. Исходя из полученных данных, было выдвинуто предположение, что процессы старения в кремний-углеродных электродах можно отследить с помощью наблюдения за такими параметрами, как эквивалентное последовательное сопротивление, низкочастотная часть импеданса, индуктивность и элементы пор хранения: сопротивление и емкость.

Таким образом, авторами была поставлена цель выявить ранние признаки старения в кремний-углеродных электродах с использованием метода электрохимической импедансометрии.

Для достижения поставленной цели была разработана и апробирована методика исследования признаков старения в электродах для суперконденсаторов. Данная методика включает в себя следующие шаги:

- Измерение ЭИС. Первый шаг включает в себя выполнение измерений ЭИС для кремний-углеродных электродов.
- Анализ данных. Полученные данные ЭИС подвергаются тщательному анализу, который включает в себя извлечение ключевых параметров, таких как наклон низкочастотной части импеданса, перемещение эквивалентного после-

довательного сопротивления, появление индуктивности.

- Моделирование эквивалентных схем. Модели эквивалентных схем представляют собой электрические схемы, состоящие из резистивных и емкостных элементов, которые имитируют характеристику импеданса электродной системы. Для кремний-углеродных электродов эквивалентная схема приведена на рис. 2.
- 4. Подгонка модели. Модели эквивалентных схем, полученные на предыдущем шаге, подгоняются к экспериментальным данным ЭИС, что включает в себя настройку значений элементов схемы таким образом, чтобы свести к минимуму разницу между смоделированным и измеренным импедансом. Параметры подбираются с помощью критерия

хи-квадрат, как показателя хорошего соответствия смоделированного отклика к фактическим данным.

5. Анализ процесса старения. Как только модели эквивалентных схем будут успешно сопоставлены с данными ЭИС, интересующие параметры в моделях схем могут быть использованы для получения информации о процессах старения, происходящих в электродах. Изменения этих параметров с течением времени могут предоставить информацию о механизме деградации, который способствует выходу из строя электрода суперконденсатора.

Для апробирования данной методики были исследованы экспериментальные образцы кремнийуглеродных электродов, модифицированных атомами никеля, полученных методом электрохимического осаждения [16, 17].

Для измерения спектров ЭИС кремний-углеродный электрод был помещен в классическую трех-электродную ячейку. Данные спектров фиксировались при 3200 циклах заряд / разряда, с шагом от 50 до 200 циклов заряд / разряда и шагом 200 для остальных измерений (рис. 3).

Анализ спектров ЭИС показал следующие изменения: перемещение спектра вдоль реальной оси, появление индуктивности и появление наклона низкочастотной части импеданса (рис. 3).

Далее были проведены моделирование спектров ЭИС с помощью модели, представленной на рис. 3, и анализ



Рис. 3. Спектры электрохимического импеданса в результате циклирования

## **MORNSUN®**

## Интегрированный изолированный трансивер RS485/CAN серии R4/R5



Требует меньше затрат



Малогабаритный



Корпус: Chiplet SOIC Габариты: 10,3 x 7,5 x 2,5 мм

> Серия R5 TDA51SCANHC



Корпус: Chiplet SOIC Габариты: 10,2 x 7,4 x 2,35 мм

> Серия R5 TDA51S485HC

## Широкий выбор моделей

| Интерфейс             | Особенности                                       | Номер компонента | Общий вид |  |
|-----------------------|---------------------------------------------------|------------------|-----------|--|
| CAN                   | Высокая скорость                                  | TDx315CANH       |           |  |
| a new states i states | Сверхвысокая скорость                             | TDxSCANFD        |           |  |
|                       | Для автомобильных<br>применений, высокая скорость | CTDx315CANH      | đ         |  |
|                       | Двойная изоляция                                  | TDx22DCAN        |           |  |
|                       | С интегрированным<br>АС/DC-источником питания     | TLAxx-03KCAN     |           |  |
| RS485                 | Низкое потребление                                | TDx31S485-L      | MALE      |  |
|                       | Хорошая изоляция                                  | TDHx01D485H      |           |  |
|                       | Надежная защита<br>от перенапряжений              | TDx01D485HE      |           |  |
|                       | С интегрированным<br>АС/DC-источником питания     | TLAxx-03K485     | AL IN     |  |
|                       | Двойная изоляция,<br>автоматическое переключение  | TDx22D485H-A     |           |  |
|                       | Высокая скорость                                  | TDx31S485H-E     |           |  |
|                       | Высокая скорость,<br>автоматическое переключение  | TDx31S485H-A     |           |  |



E-mail: info@mornsun.cn

Website: www.mornsun-power.com Facebook/Linkedin: Mornsun Power



полученных параметров эквивалентной схемы (табл. 1).

Анализ параметров модели показал, что процесс старения в кремний-углеродных электродах протекает по определенной схеме. При циклировании не происходит существенных изменений емкости двойного электрического слоя и сопротивления переноса заряда, однако наблюдается изменение последовательного эквивалентного сопротивления, что указывает на протекание процессов старения в электродах, как упоминалось ранее.

Первичные признаки старения связаны с пористой структурой электрода. Так, после 2400 циклов заряда/разряда в электроде суперконденсатора происходит резкое увеличение емкости пор хранения, далее растет сопротивление пор хранения и, как следствие, снижается удельная емкость электрода.

Таким образом, процесс старения кремний-углеродных электродов описывается следующими явлениями:

- отсутствием существенных изменений емкости двойного электрического слоя и сопротивления переноса заряда во время циклирования;
- перемещением последовательного эквивалентного сопротивления вдоль реальной оси графика Найквиста;
- увеличением емкости пор хранения после 2400 циклов заряда / разряда. (рис. 4);
- ростом сопротивления пор хранения после увеличения их емкости (рис. 4);
- в результате происходит снижение емкости электрода.

В заключение следует отметить, что были выявлены начальные признаки старения в кремнийуглеродных электродах для суперконденсаторов, такие как изменение эквивалентного последовательного сопротивления, наклон низкочастотной части импеданса, появление индуктивности и изменение сопротивления и емкости пор хранения. Разработана методика, которая **Таблица 1.** Параметры эквивалентных схем при проведении испытаний на старение

| Кол-во<br>циклов | Rs,<br>Ohm | Rdl,<br>Ohm | Cdl,<br>F <sup>-3</sup> | Ws-Rs,<br>Ohm | Wt-Rt,<br>Ohm | Ws-Cs,<br>F <sup>-5</sup> | Wt-Ct,<br>F <sup>-3</sup> |
|------------------|------------|-------------|-------------------------|---------------|---------------|---------------------------|---------------------------|
| 0                | 1,091      | 1,08        | 22,387                  | 0,61016       | 2,812         | 0,39752                   | 1,535                     |
| 50               | 1,083      | 1,12        | 25,964                  | 0,61114       | 2,314         | 0,44497                   | 0,96441                   |
| 200              | 1,104      | 2,22        | 28,183                  | 0,78112       | 25,76         | 0,43993                   | 0,89703                   |
| 800              | 1,167      | 3,08        | 44,736                  | 0,69415       | 2,189         | 0,14317                   | 0,55944                   |
| 1400             | 1,175      | 5,1         | 36,888                  | 0,76143       | 2,812         | 0,042149                  | 0,54534                   |
| 1700             | 1,116      | 2,242       | 30,656                  | 0,86901       | 2,182         | 1,39                      | 1,029                     |
| 2200             | 1,152      | 1,821       | 27,111                  | 0,96995       | 2,397         | 4,56                      | 1,04                      |
| 2600             | 1,171      | 2,08        | 29,359                  | 1,381         | 1,869         | 0,3591                    | 0,36309                   |
| 3200             | 1,175      | 1,948       | 20,105                  | 11,35         | 1,019         | 0,53047                   | 0,36289                   |
|                  |            |             |                         |               |               |                           |                           |

обеспечивает системный и комплексный подход к исследованию процессов старения в кремний-углеродных электродах суперконденсаторов и позволяет по данным импедансометрии и моделирования методом эквивалентных



**Рис. 4.** Изменение емкости (синяя линия) и сопротивления (оранжевая линия) пор хранения кремний-углеродных электродов суперконденсаторов



АО «НПП «ЭСТО» - абъединение ведущих российских предприятий, специализирующихся на разработках, производстве, модернизации, продаже и сервисном обслуживании специального технологического оборудования

# ПРОИЗВОДСТВО ОТЕЧЕСТВЕННОГО СПЕЦИАЛЬНОГО ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ



Разработка и производство технологического оборудования



Внедрение технологий



Поставки зарубежного оборудования и комплексных технологий



Модернизация технологического оборудования любой сложности



Сервисное обслуживание технологического оборудования



Проектиривание и строительство производств микроэлектроники



Обучение специалистов заказчика



Технологический аудит производство



124460, Mockan, Beterntpon, hpoce Feopreescost, p.5, cap.)

> 8 (400) 729:77-51 8 (400) 479:17 - 29

info@inppesto.ru

WWW.NPPESTO.RU

схем выявить наилучшие образцы электродов по показателю долговечности. Дальнейшие исследования в этой области могут привести к разработке улучшенных материалов и конструкций электродов, что в итоге увеличит общий срок службы и производительность суперконденсаторов.

#### ЛИТЕРАТУРА

- Liu G., Ma L., Liu Q. M. The Preparation of Co<sub>3</sub>O<sub>4</sub>@MnO<sub>2</sub> Hierarchical Nano-sheets for High-output Potential Supercapacitors // Electrochim. Acta 2020. No. 364. 137265.
- Xiang Chen, Chuan Jing, Xin Fu, Man Shen, Tong Cao, Wangchen Huo, Xiaoying Liu, Hong-Chang Yao, Yuxin Zhang, Ke Xin Yao. In-situ fabricating MnO<sub>2</sub> and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor // Applied Surface Science. 2020. V. 503. 144123.
- 3. Muhammad Sufyan Javed, Syed Shoaib Ahmad Shah, Shahid Hussain, Shaozao Tan, Wenjie Mai. Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8 V supercapacitor // Chemical Engineering Journal. 2020. V. 382. 122814.
- 4. Loreto Suárez, Violeta Barranco, Teresa A. Centeno. Impact of carbon pores size on ionic liquid basedsupercapacitor performance // Journal of Colloid and Interface Science. 2021. V. 588. PP. 705–712.
- Yi T.F., Mei J., Guan B.L., Cui P., Luo S.H., Xie Y., Liu Y.G. Construction of Spherical NiO@MnO<sub>2</sub> with Core-shell Structure Obtained by Depositing MnO<sub>2</sub> Nanoparticles on NiO Nanosheets for High-performance Supercapacitor // Ceram. Int. 2020. V. 46. PP. 421–429.
- Zhang M. W., Liu W. W., Liang R. L., Tjandra R., Yu A. P. Graphene Quantum Dot Induced Tunable Growth of Nanostructured MnCo<sub>2</sub>O<sub>4</sub>.5 Composites for Highperformance Supercapacitors // Sustain. Energy Fuels 2019. V. 3. PP. 2499–2508.



- Zhang X.Y., Li Z., Yu Z.Y., Wei L., Guo X. Mesoporous NiMoO<sub>4</sub> Microspheres Decorated by Ag Quantum Dots as Cathode Material for Asymmetric Supercapacitors: Enhanced Interfacial Conductivity and Capacitive Storage // Appl. Surf. Sci. 2020. V. 505. 144513.
- Zhu D., Sun X., Yu J., Liu Q., Liu J.Y., Chen R.R., Zhang H.S., Li R.M., Yu J., Wang J. Rationally Designed CuCo<sub>2</sub>O<sub>4</sub>@Ni(OH)<sub>2</sub> with 3D Hierarchical Core-shell Structure for Flexible Energy Storage // J. Colloid Interface Sci. 2019. V. 557. PP. 76–83.
- Liu Q., Hong X. D., Zhang X., Wang W., Guo W. X., Liu X. Y., Ye M. D. Hierarchically Structured Co958@NiCo<sub>2</sub>O<sub>4</sub> Nanobrushes for High-performance Flexible Asymmetric Supercapacitors // Chem. Eng. J. 2019. V. 356. PP. 985–993.
- Chen H., Hu H. M., Han F., Liu J. D., Zhang Y. R., Zheng Y. H. CoMoO<sub>4</sub>/bamboo Charcoal Hybrid Material for High-energy-density and High Cycling Stability Supercapacitors // Dalton Trans. 2020. V. 49. 10799–10807.
- Masayuki Itagaki, Yasunari Hatada, Isao Shitanda, Kunihiro Watanabe. Complex impedance spectra of porous electrode with fractal structure. Electrochimica Acta. 2010. V. 55. PP. 6255–6262.
- 12. Noya Loew, Tomohiro Tanaka, Hikari Watanabe, Isao Shitanda, Masayuki Itagaki. Electrochemical impedance simulation of porous electrodes with variously shaped pores using 3-dimensional finite element method // Electrochimica Acta. 2023. V. 440. 141723.
- El Hassane Lahrar, Patrice Simon, Céline Merlet. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance // J. Chem. Phys. 2021. V. 155 (18): 184703.
- 14. Elhosiny Ali H., Ganesh V., Haritha L., Aboraia A.M., Hegazy H.H., Butova V., Soldatov A.V., Algarni H., Guda A., Zahran H.Y., Khairy Y., Yahia I.S. Kramers-Kronig analysis of the optical linearity and nonlinearity of nanostructured Ga-doped ZnO thin films, Optics & Laser Technology. V. 135. 2021. 106691.
- Богуш И.Ю., Плуготаренко Н.К., Мясоедова Т.Н. Исследование функциональных характеристик мезопористых электродов суперконденсаторов на основе кремнийуглеродных пленок // Журнал технической физики. 2022. Т. 92, № 12. С. 1833–1843.
- Mikhailova T. S., Grigoryev M. N., Myasoedova T. N. The two-stage electrochemical deposition of a manganesedoped silicon-carbon film onto the silicon (100) substrate [Text] // https://iopscience.iop.org/article/10.1088/ 1742-6596/1410/1/012027.
- 17. Григорьев М.Н., Михайлова Т.С., Мясоедова Т.Н. Получение кремний-углеродных пленок на электропроводящей и диэлектрической подложках методом электрохимического осаждения // Известия ЮФУ. Технические науки. 2018. № 7(201). С. 56–66.