Выпуск #2/2000
Н. Слепов.
Фотонные кристаллы. Будущее вычислительной техники и связи
Фотонные кристаллы. Будущее вычислительной техники и связи
Просмотры: 3640
Прогресс оптических технологий в вычислительной технике и связи невозможен без одновременного развития их элементной базы – средств мультиплексирования, коммутации, передачи сигналов. Новое слово в этой области – фотонные кристаллы, способные не только заменить традиционные элементы оптических систем, но и стать основой для фотонных интегральных схем – альтернативы электронных БИС. Значение таких схем поистине революционно. Конечно, сегодня фотонные кристаллы – это лишь лабораторные объекты, но их потенциальные возможности настолько широки, что промышленная реализация данных структур, скорее всего, не заставит себя долго ждать.
Фотонные кристаллы (ФК) – это искусственные периодические диэлектрические структуры (материалы) с запрещенной зоной, препятствующей распространению света в определенном частотном диапазоне. Создавая точечные дефекты (или резонансные полости) в таком кристалле, можно захватить фотоны в “ловушки” запрещенной зоны (локализовать фотоны в полостях дефекта), а затем определенным образом использовать. Частотный диапазон и другие параметры такой полости можно задавать достаточно просто. Регулярные структуры интегральных оптических волноводов (или диэлектрических стержней) с круглым, прямоугольным или шестигранным сечением позволяют формировать диэлектрическую (оптическую) и даже гибридную (диэлектрически-металлическую) кристаллические структуры, которые обладают удивительными свойствами [1].
Идея фотонных кристаллов впервые была предложена в 1987 году Эли Яблоновичем (Eli Yablonovitch, сейчас – сотрудник университета UCLA в Калифорнии). Однако предложенная им технология мало подходила для формирования структуры кристаллов, которая позволяла бы работать с оптическими длинами волн в широко известных окнах прозрачности (850, 1310, 1550 нм). С этой проблемой справляется новая технология, разработанная специалистами Scandia Lab. (США).
В простейшем случае ФК можно получить путем добавления периодической структуры к обычному оптическому волноводу. Технологический процесс заключается в осаждении слоя кремния на подложку SiO2 с последующим формированием в Si-слое точечных дефектов, в целом периодических, но с локальной нерегулярностью, которая и создает необходимые эффекты. Фотонные кристаллы позволяют реализовать такие недоступные для обычных оптических устройств эффекты, как передача оптического луча с поворотом на 90о практически без потерь мощности и пересечение двух оптических волноводов в одной плоскости с пренебрежимо малым уровнем переходных помех.
Типы фотонных кристаллов
Описаны три типа фотонных кристаллов: одномерные, двумерные и трехмерные. Одномерный периодический ФК можно создать путем нанесения полосы кремния с прямоугольным сечением на подложку SiO2 и вытравливания в ней отверстий, расположенных на одной линии вдоль полосы на равном расстоянии друг от друга (рис. 1). Такая структура формирует запрещенную зону, в чем-то аналогичную запрещенной зоне в полупроводниковых материалах. Для создания точечного дефекта (резонансной полости) расстояние между двумя отверстиями должно незначительно превышать период структуры. Так, для прототипа ФК с резонансной длиной волны 4500 нм расстояние между щелевыми (с продольной осью щели вдоль продольной оси полосы) отверстиями составляло 1800 нм [2]. Примерно такой же была длина щели в продольном направлении. В другом прототипе (с центральной резонансной длиной волны 1540 нм) на кремниевой полосе вытравливалось восемь отверстий диаметром 200 нм с периодом 220 нм, кроме интервала между четвертым и пятым (центрально-симметричными) отверстиями, который был чуть больше.
Точечный дефект (резонансная полость) действует следующим образом. Белый свет, вошедший с торца планарного волновода (кремниевой полосы) распространяется вдоль него. Волна с резонансной частотой захватывается между двумя центральными отверстиями (благодаря сформированной в структуре запрещенной зоне) и многократно отражается назад-вперед между этими отверстиями (внутреннее отражение из-за зеркального эффекта в резонансной полости). Оптические колебания на резонансной частоте усиливаются за счет энергии поступающего света аналогично тому, как это происходит, например, в оптических усилителях Фабри-Перо. Другие же спектральные компоненты экспоненциально угасают (из-за запрещенной зоны). При достаточном усилении свет резонансной частоты вырывается из резонансной полости и выходит из торца волновода. Например, для второго прототипа резонансная полоса длин волн может составить 400 нм: от 1300 до 1700 нм с центральной длиной волны 1540 нм, что практически перекрывает используемые для оптической связи последние два окна прозрачности. Зеркальный эффект обусловлен значительной разницей в коэффициентах преломления Si (высокий) и SiO2 (низкий).
Двумерный периодический ФК получают, формируя периодическую структуру вертикальных диэлектрических (Si) стержней, посаженных “квадратно-гнездовым способом” на подложке из двуокиси кремния. Ячейкой двумерного ФК может служить симметричная решетка из девяти стержней, оптический дефект в которой вызван изменением диаметра центрального стержня на 50% (рис. 2) [3].
Двумерная регулярно-симметричная решетка также формирует запрещенную зону, которая препятствует прохождению оптического луча вдоль стержней. В двумерном ФК можно создать не только точечный, но и линейный дефект, который позволяет задавать направление распространения луча на резонансной частоте.
Трехмерный периодический ФК – это трехмерная регулярно-симметричная решетка, создающая трехмерную же запрещенную зону, препятствующую прохождению света через ФК. В таком ФК можно создать пространственный дефект, способствующий прохождению света определенной частоты в заданном направлении в пространстве. В силу сложности создания трехмерного ФК его часто моделируют двумерным ФК, создать который значительно проще.
Первый трехмерный ФК был получен Яблоновичем в 1991 году для работы в микроволновом диапазоне. В качестве заготовки использовался куб диэлектрика, на поверхность которого наносилась маска с массивом отверстий, каждое из которых затем рассверливалось по трем направлениям под углом 35о к вертикали и 120о друг к другу так, что в горизонтальном сечении формировались массивы из трех отверстий, расположенных в вершинах равностороннего треугольника (рис. 3). Данная структура получила название кристалла Яблоновича.
Учитывая сложность изготовления такого кристалла, были предприняты другие попытки его получения. Так, в 1994 году Фан (Fan) и его коллеги предложили структуру кубического ФК, рассчитанного на субмикронные технологии и собранного послойно из двух различных диэлектрических материалов (Si и SiO2). Каналы из материала с низким коэффициентом диэлектрической проницаемости e расположены в шахматным порядке и проходят через материал с высоким e. В кубе вытравливались строго вертикальные отверстия, формирующие в плоскости ту же треугольную структуру, что и в ФК Яблоновича (рис. 4).
Однако наиболее технологична структура трехмерного ФК, формируемая по методу Лина-Флеминга (Shawn Lin и Jim Fleming из Scandia Lab.) [4]. На кремниевую подложку наносят первый слой SiO2, в котором нарезают параллельные борозды, заполняемые поликремнием. Этот процесс повторяют, но так, что в каждом следующем слое двуокиси кремния направление нарезки борозд перпендикулярно предыдущему. После изготовления многослойной заготовки (первоначально в лаборатории была получена шестислойная структура) двуокись кремния удаляют, оставляя трехмерный остов из поликремниевых стержней (рис. 5). Эффективность захвата светового потока такой структурой – 95%. Однако наибольшая эффективность достигается при девятислойной структуре.
Для создания световодного канала в этой структуре (например, для эффективного поворота светового потока под углом 90о) из нее нужно удалить один или несколько стержней, что непросто, но вполне возможно в рамках описанного технологического процесса.
Зачем нужны фотонные кристаллы
Фотонные кристаллы найдут широкое применение в фотонных (оптических) интегральных технологиях для создания фотонных интегральных схем (ФИС). Эти схемы необходимы не только для перспективного оборудования оптических сетей связи, но и для сверхбыстродействующих компьютерных систем. Так, используя систему связанных линейных и пространственных дефектов, можно формировать сложную геометрию пространственного оптического волновода, аналогично топологии электрических связей в электрических интегральных схемах (ЭИС). Следовательно, технология формирования ФК может быть использована для изготовления ФИС, способных в будущем заменить ЭИС в микропроцессорной технике. Такая замена позволит резко сократить высокое энергопотребление, характерное для всех ЭИС, а также увеличить тактовые частоты и скорость передачи данных за счет более высокой скорости распространения оптического луча по сравнению с фазовой скоростью электрического сигнала.
Кроме того, ФК применимы в ряде сложных, хотя и частных функциональных задач, таких как поворот оптического луча на 90о, пересечение в плоскости двух оптических волноводов с минимальными переходными помехами и эффективная фильтрация отдельной оптической несущей.
Поворот оптического луча в оптическом волноводе без существенных потерь возможен только при условии, что радиус поворота значительно больше длины волны луча света. Соблюдение этого условия в интегральной оптике затруднительно, а то и невозможно, особенно для диапазона, соответствующего третьему окну прозрачности, – 1550 нм.
Поворот луча удобнее рассматривать в плоскости и применительно к двумерному ФК. Запрещенная зона препятствует прохождению света (определенной спектральной полосы) в слое материала. Для прохождения луча формируется не точечный, а линейный дефект структуры (например, убирается один ряд стержней). Для поворота луча на 90о формируют два линейных дефекта, соединенных под прямым углом. Физически это сводится к удалению ряда стержней на предполагаемом пути следования луча, – в периодической двумерной структуре создают прямоугольный канал (рис. 6), выходу излучения из которого препятствует запрещенная зона.
Теоретически прохождению луча препятствуют отражения, однако фактически эффективность передачи может быть близка к 100%. Как видно из рис. 6, радиус поворота имеет порядок 2a, (где a – период решетки), что меньше длины волны луча. Такой поворот можно рассматривать как явление, аналогичное одномерному резонансному туннельному эффекту в квантовой механике.
Другая проблема, связанная с созданием ФИС, – это пересечение оптических волноводов в одной плоскости. В электрических ИС она решается путем создания многослойных структур и связи слоев перемычками. Если просто перекрестить два оптических волновода в одной плоскости, то уровень переходной помехи, вызванной взаимодействием лучей, достигнет 30—40%. Также велики потери из-за отражения сигнала от центра пересечения волноводов. Чтобы устранить причины этих потерь в двумерном ФК, необходимо соблюдение трех условий [5]: волноводы должны иметь зеркальную симметрию относительно своих осей и быть одномодовыми; резонансная полость в центре пересечения волноводов не должна нарушать зеркальные плоскости обоих световодов; резонансные моды волноводов должны различаться по четности (четная и нечетная мода, рис. 7).
Резонансная полость имеет (в проекции) вид ячейки двумерного ФК – симметричная решетка из девяти стержней с диаметром центрального стержня, на 50% превышающим остальные (рис. 2). Согласно работе [5], переходная помеха при соблюдении указанных условий может уменьшиться на восемь порядков.
Возможно и применение ФК в качестве фильтра, выделяющего определенную оптическую несущую, например, из набора несущих потока WDM, в оптических мультиплексорах ввода/вывода и устройствах оптической маршрутизации.
Проблема фильтрации оптической несущей или волны с определенной длиной из дискретного спектра длин волн возникла в оптике давно и решалась различными, как правило традиционно оптическими, средствами. Общий недостаток обычных полосовых оптических фильтров (ПОФ) – относительно большая ширина полосы и низкая добротность, а значит – низкие разрешающая способность и избирательность. ПОФ были приемлемы для систем с WDM и DWDM, когда разнос несущих составлял 200 ГГц (~1,6 нм). При 100 ГГц (~0,8 нм) они стала критичными, а при 50 ГГц (~0,4 нм) – неудовлетворительными. В связи с этим в последнее время параллельно решаются две задачи: создание систем ввода/вывода несущих для плотных (DWDM) и высокоплотных (HDWDM) систем WDM и разработка высокодобротных узкополосных фильтров, которые могли бы обеспечить требуемые параметры этих систем.
Общая проблема выделения оптической несущей (канала) может быть решена с помощью приведенной на рис. 8 схемы с фильтром канала вывода (ФКВ, CDF – Channel Drop Filter) [6], использующего резонансную полость или, в общем случае, оптическую резонаторную систему (ОРС).
Cхема вывода состоит из двух оптических волноводов: общей шины (bus) и шины вывода (drop), связанных между собой ОРС. Оптическая волна, распространяющаяся в общей шине в прямом направлении, возбуждает в РП определенную моду (или моды) колебаний, которая переходит из РП в шину вывода в результате взаимодействия с ней и распространяется в прямом или обратном направлении. Конструкция ОРС определяет параметры фильтра (например, число мод) и эффективность передачи энергии из общей шины в шину вывода. В отличие от других конструктивных решений РП, только микрополости в ФК позволяют получить одну резонансную моду и обеспечить минимум потерь на излучение, доводя передачу энергии и эффективность до 100%.
При реализации схемы, приведенной на рис. 8, возникает проблема проникновения в общую шину сигнала отражения моды, возбужденной в РП. Этот сигнал распространяется как в прямом, так и обратном направлении. Для его компенсации можно создать две зеркально симметричные (четные и нечетные) моды одной частоты, которые позволили бы компенсировать составляющие сигнала, распространяющиеся в обратном направлении в обеих шинах.
Одно из схемных решений фильтра канала вывода с ОРС на основе фотонного кристалла показано на рис. 9 [6]. Решетка двумерного ФК образована двумя типами стержней: четыре стержня с e=9,5 (черные кружки) и остальные – с e=11,56 (белые кружки). Диаметр стержней – 0,2а, где а – постоянная решетки. В решетке сформированы два параллельных волновода: общая шина и шина вывода. Две одинаковых РП симметрично расположены между волноводами (между черными стержнями). Они имеют вид ячейки двумерного ФК с точечным дефектом в центре (диаметр центрального стержня – 0,05а, e=6,6). Расстояние между ячейками, равное 5а, выбрано для уравнивания их добротности, которая достигает 1000. Две РП нужны для создания двух мод, одинаковых по частоте, но зеркально симметричных относительно плоскости, перпендикулярной к линии волноводов. На рис. 9 показано распределение напряженности поля в стационарном состоянии. Синий цвет соответствует положительному максимуму, черный – отрицательному минимуму, светло-серый – нулевому уровню напряженности поля.
Проведенное машинное моделирование [6], показало, что при выбранных параметрах ФК сигналы, распространяющиеся в обратном направлении в шине вывода, практически полностью компенсируются (на рисунке их следов не видно), а амплитуды сигналов, распространяющихся в прямом направлении составляют, 99% от резонансных в шине вывода и практически отсутствуют – в общей шине (на рисунке их также не видно).
В [6] описано и другое схемное решение, основанное на более сложном расчете механизма компенсации, где требуется только одна РП при диаметре центрального стержня 0,6а и других соотношениях e окружающих стержней.
Фотонный кристалл с управляемой шириной запрещенной зоны
Описанные выше ФК формировались так, что ширина их запрещенной зоны была фиксированной и неуправляемой. В 1999 году усилиями группы Саджива Джона (Sajeev John из университета Торонто) удалось создать структуру фотонного кристалла с управляемой шириной запрещенной зоны. ФК построен на основе искусственного кристалла опала, причем воздушные пустоты кристалла заполняют кремнием, затем субстанцию опала вытравливают, формируя инверсную опалу кристаллическую структуру с периодически расположенными сферическими пустотами (рис. 10) [7]. Запрещенная зона данной структуры препятствует распространению длин волн в диапазоне 1380–1620 нм (8% относительно центральной длины волны 1500 нм). Для управления шириной запрещенной зоны внутренние поверхности сфер покрывались (методом инфильтрации) жидкокристаллическим нематиком с низким коэффициентом преломления (темно-голубая полусфера на верхнем срезе кристалла, рис. 10). В результате относительная ширина запрещенной зоны уменьшилась с 8 до 1,6%. Кроме того, прикладывая внешнее магнитное поле, можно управлять шириной запрещенной зоны в диапазоне 1,6–0%. Этот эффект сравним с управлением потоком электронов в полупроводнике с помощью электрического поля.
Управление шириной запрещенной зоны с помощью магнитного поля позволит создать более эффективные и простые, чем на основе фильтров канала вывода, структуры коммутаторов (в том числе и распределенные, так как свет может коммутироваться в нужном направлении путем приложения поля к определенной области ФК). Кроме того, возможно более точно управлять положением луча, проходящего через распределенную структуру ФК, что облегчает его маршрутизацию – динамическую или статическую, в плоскости или пространстве. Однако еще предстоит преодолеть такие проблемы, как управление степенью инфильтрации жидких кристаллов и равномерность их распределения по внутренним поверхностям сфер.
Литература
1. Photonic Crystal Research. – http://jdj.mit.edu/photons/index.html
2. One-Dimentional Photonic Crystals. – http://jdj.mit.edu/photons/1d-crystal.html
3. Resonant Cavities in Photonic Crystals. – http://jdj.mit.edu/photons/resonant-cavities.html
4. Photonic Crystal Keeps Light Inside. – http://www.vacuum-solutions.com/main/article/01/7/2
5. Perfect Waveguide Intersection. – http://jdj.mit.edu/photons/cross.html.
(Полностью материал см. в работе: Johnson S.G., Manolatou Ch., Fan Sh., Villeneuve P.R., Joannopoulos J.D., Haus H.A. Elimination of Crosstalk in Waveguide Intersections. – Optics Letters, 1998, Dec, №23.
6. Fan Sh., Villeneuve P.R., Joannopoulos J.D., Haus H.A. Channel Drop Filters in Photonic Crystals. – Optics Express 4, 1998, 6 July, Vol. 3, №1.
7. Gaughan Richard. Researchers Create Tunable Photonic Bandgap Crystal. – Photonics Spectra, 2000, Jan. Vol. 34, №1.
Идея фотонных кристаллов впервые была предложена в 1987 году Эли Яблоновичем (Eli Yablonovitch, сейчас – сотрудник университета UCLA в Калифорнии). Однако предложенная им технология мало подходила для формирования структуры кристаллов, которая позволяла бы работать с оптическими длинами волн в широко известных окнах прозрачности (850, 1310, 1550 нм). С этой проблемой справляется новая технология, разработанная специалистами Scandia Lab. (США).
В простейшем случае ФК можно получить путем добавления периодической структуры к обычному оптическому волноводу. Технологический процесс заключается в осаждении слоя кремния на подложку SiO2 с последующим формированием в Si-слое точечных дефектов, в целом периодических, но с локальной нерегулярностью, которая и создает необходимые эффекты. Фотонные кристаллы позволяют реализовать такие недоступные для обычных оптических устройств эффекты, как передача оптического луча с поворотом на 90о практически без потерь мощности и пересечение двух оптических волноводов в одной плоскости с пренебрежимо малым уровнем переходных помех.
Типы фотонных кристаллов
Описаны три типа фотонных кристаллов: одномерные, двумерные и трехмерные. Одномерный периодический ФК можно создать путем нанесения полосы кремния с прямоугольным сечением на подложку SiO2 и вытравливания в ней отверстий, расположенных на одной линии вдоль полосы на равном расстоянии друг от друга (рис. 1). Такая структура формирует запрещенную зону, в чем-то аналогичную запрещенной зоне в полупроводниковых материалах. Для создания точечного дефекта (резонансной полости) расстояние между двумя отверстиями должно незначительно превышать период структуры. Так, для прототипа ФК с резонансной длиной волны 4500 нм расстояние между щелевыми (с продольной осью щели вдоль продольной оси полосы) отверстиями составляло 1800 нм [2]. Примерно такой же была длина щели в продольном направлении. В другом прототипе (с центральной резонансной длиной волны 1540 нм) на кремниевой полосе вытравливалось восемь отверстий диаметром 200 нм с периодом 220 нм, кроме интервала между четвертым и пятым (центрально-симметричными) отверстиями, который был чуть больше.
Точечный дефект (резонансная полость) действует следующим образом. Белый свет, вошедший с торца планарного волновода (кремниевой полосы) распространяется вдоль него. Волна с резонансной частотой захватывается между двумя центральными отверстиями (благодаря сформированной в структуре запрещенной зоне) и многократно отражается назад-вперед между этими отверстиями (внутреннее отражение из-за зеркального эффекта в резонансной полости). Оптические колебания на резонансной частоте усиливаются за счет энергии поступающего света аналогично тому, как это происходит, например, в оптических усилителях Фабри-Перо. Другие же спектральные компоненты экспоненциально угасают (из-за запрещенной зоны). При достаточном усилении свет резонансной частоты вырывается из резонансной полости и выходит из торца волновода. Например, для второго прототипа резонансная полоса длин волн может составить 400 нм: от 1300 до 1700 нм с центральной длиной волны 1540 нм, что практически перекрывает используемые для оптической связи последние два окна прозрачности. Зеркальный эффект обусловлен значительной разницей в коэффициентах преломления Si (высокий) и SiO2 (низкий).
Двумерный периодический ФК получают, формируя периодическую структуру вертикальных диэлектрических (Si) стержней, посаженных “квадратно-гнездовым способом” на подложке из двуокиси кремния. Ячейкой двумерного ФК может служить симметричная решетка из девяти стержней, оптический дефект в которой вызван изменением диаметра центрального стержня на 50% (рис. 2) [3].
Двумерная регулярно-симметричная решетка также формирует запрещенную зону, которая препятствует прохождению оптического луча вдоль стержней. В двумерном ФК можно создать не только точечный, но и линейный дефект, который позволяет задавать направление распространения луча на резонансной частоте.
Трехмерный периодический ФК – это трехмерная регулярно-симметричная решетка, создающая трехмерную же запрещенную зону, препятствующую прохождению света через ФК. В таком ФК можно создать пространственный дефект, способствующий прохождению света определенной частоты в заданном направлении в пространстве. В силу сложности создания трехмерного ФК его часто моделируют двумерным ФК, создать который значительно проще.
Первый трехмерный ФК был получен Яблоновичем в 1991 году для работы в микроволновом диапазоне. В качестве заготовки использовался куб диэлектрика, на поверхность которого наносилась маска с массивом отверстий, каждое из которых затем рассверливалось по трем направлениям под углом 35о к вертикали и 120о друг к другу так, что в горизонтальном сечении формировались массивы из трех отверстий, расположенных в вершинах равностороннего треугольника (рис. 3). Данная структура получила название кристалла Яблоновича.
Учитывая сложность изготовления такого кристалла, были предприняты другие попытки его получения. Так, в 1994 году Фан (Fan) и его коллеги предложили структуру кубического ФК, рассчитанного на субмикронные технологии и собранного послойно из двух различных диэлектрических материалов (Si и SiO2). Каналы из материала с низким коэффициентом диэлектрической проницаемости e расположены в шахматным порядке и проходят через материал с высоким e. В кубе вытравливались строго вертикальные отверстия, формирующие в плоскости ту же треугольную структуру, что и в ФК Яблоновича (рис. 4).
Однако наиболее технологична структура трехмерного ФК, формируемая по методу Лина-Флеминга (Shawn Lin и Jim Fleming из Scandia Lab.) [4]. На кремниевую подложку наносят первый слой SiO2, в котором нарезают параллельные борозды, заполняемые поликремнием. Этот процесс повторяют, но так, что в каждом следующем слое двуокиси кремния направление нарезки борозд перпендикулярно предыдущему. После изготовления многослойной заготовки (первоначально в лаборатории была получена шестислойная структура) двуокись кремния удаляют, оставляя трехмерный остов из поликремниевых стержней (рис. 5). Эффективность захвата светового потока такой структурой – 95%. Однако наибольшая эффективность достигается при девятислойной структуре.
Для создания световодного канала в этой структуре (например, для эффективного поворота светового потока под углом 90о) из нее нужно удалить один или несколько стержней, что непросто, но вполне возможно в рамках описанного технологического процесса.
Зачем нужны фотонные кристаллы
Фотонные кристаллы найдут широкое применение в фотонных (оптических) интегральных технологиях для создания фотонных интегральных схем (ФИС). Эти схемы необходимы не только для перспективного оборудования оптических сетей связи, но и для сверхбыстродействующих компьютерных систем. Так, используя систему связанных линейных и пространственных дефектов, можно формировать сложную геометрию пространственного оптического волновода, аналогично топологии электрических связей в электрических интегральных схемах (ЭИС). Следовательно, технология формирования ФК может быть использована для изготовления ФИС, способных в будущем заменить ЭИС в микропроцессорной технике. Такая замена позволит резко сократить высокое энергопотребление, характерное для всех ЭИС, а также увеличить тактовые частоты и скорость передачи данных за счет более высокой скорости распространения оптического луча по сравнению с фазовой скоростью электрического сигнала.
Кроме того, ФК применимы в ряде сложных, хотя и частных функциональных задач, таких как поворот оптического луча на 90о, пересечение в плоскости двух оптических волноводов с минимальными переходными помехами и эффективная фильтрация отдельной оптической несущей.
Поворот оптического луча в оптическом волноводе без существенных потерь возможен только при условии, что радиус поворота значительно больше длины волны луча света. Соблюдение этого условия в интегральной оптике затруднительно, а то и невозможно, особенно для диапазона, соответствующего третьему окну прозрачности, – 1550 нм.
Поворот луча удобнее рассматривать в плоскости и применительно к двумерному ФК. Запрещенная зона препятствует прохождению света (определенной спектральной полосы) в слое материала. Для прохождения луча формируется не точечный, а линейный дефект структуры (например, убирается один ряд стержней). Для поворота луча на 90о формируют два линейных дефекта, соединенных под прямым углом. Физически это сводится к удалению ряда стержней на предполагаемом пути следования луча, – в периодической двумерной структуре создают прямоугольный канал (рис. 6), выходу излучения из которого препятствует запрещенная зона.
Теоретически прохождению луча препятствуют отражения, однако фактически эффективность передачи может быть близка к 100%. Как видно из рис. 6, радиус поворота имеет порядок 2a, (где a – период решетки), что меньше длины волны луча. Такой поворот можно рассматривать как явление, аналогичное одномерному резонансному туннельному эффекту в квантовой механике.
Другая проблема, связанная с созданием ФИС, – это пересечение оптических волноводов в одной плоскости. В электрических ИС она решается путем создания многослойных структур и связи слоев перемычками. Если просто перекрестить два оптических волновода в одной плоскости, то уровень переходной помехи, вызванной взаимодействием лучей, достигнет 30—40%. Также велики потери из-за отражения сигнала от центра пересечения волноводов. Чтобы устранить причины этих потерь в двумерном ФК, необходимо соблюдение трех условий [5]: волноводы должны иметь зеркальную симметрию относительно своих осей и быть одномодовыми; резонансная полость в центре пересечения волноводов не должна нарушать зеркальные плоскости обоих световодов; резонансные моды волноводов должны различаться по четности (четная и нечетная мода, рис. 7).
Резонансная полость имеет (в проекции) вид ячейки двумерного ФК – симметричная решетка из девяти стержней с диаметром центрального стержня, на 50% превышающим остальные (рис. 2). Согласно работе [5], переходная помеха при соблюдении указанных условий может уменьшиться на восемь порядков.
Возможно и применение ФК в качестве фильтра, выделяющего определенную оптическую несущую, например, из набора несущих потока WDM, в оптических мультиплексорах ввода/вывода и устройствах оптической маршрутизации.
Проблема фильтрации оптической несущей или волны с определенной длиной из дискретного спектра длин волн возникла в оптике давно и решалась различными, как правило традиционно оптическими, средствами. Общий недостаток обычных полосовых оптических фильтров (ПОФ) – относительно большая ширина полосы и низкая добротность, а значит – низкие разрешающая способность и избирательность. ПОФ были приемлемы для систем с WDM и DWDM, когда разнос несущих составлял 200 ГГц (~1,6 нм). При 100 ГГц (~0,8 нм) они стала критичными, а при 50 ГГц (~0,4 нм) – неудовлетворительными. В связи с этим в последнее время параллельно решаются две задачи: создание систем ввода/вывода несущих для плотных (DWDM) и высокоплотных (HDWDM) систем WDM и разработка высокодобротных узкополосных фильтров, которые могли бы обеспечить требуемые параметры этих систем.
Общая проблема выделения оптической несущей (канала) может быть решена с помощью приведенной на рис. 8 схемы с фильтром канала вывода (ФКВ, CDF – Channel Drop Filter) [6], использующего резонансную полость или, в общем случае, оптическую резонаторную систему (ОРС).
Cхема вывода состоит из двух оптических волноводов: общей шины (bus) и шины вывода (drop), связанных между собой ОРС. Оптическая волна, распространяющаяся в общей шине в прямом направлении, возбуждает в РП определенную моду (или моды) колебаний, которая переходит из РП в шину вывода в результате взаимодействия с ней и распространяется в прямом или обратном направлении. Конструкция ОРС определяет параметры фильтра (например, число мод) и эффективность передачи энергии из общей шины в шину вывода. В отличие от других конструктивных решений РП, только микрополости в ФК позволяют получить одну резонансную моду и обеспечить минимум потерь на излучение, доводя передачу энергии и эффективность до 100%.
При реализации схемы, приведенной на рис. 8, возникает проблема проникновения в общую шину сигнала отражения моды, возбужденной в РП. Этот сигнал распространяется как в прямом, так и обратном направлении. Для его компенсации можно создать две зеркально симметричные (четные и нечетные) моды одной частоты, которые позволили бы компенсировать составляющие сигнала, распространяющиеся в обратном направлении в обеих шинах.
Одно из схемных решений фильтра канала вывода с ОРС на основе фотонного кристалла показано на рис. 9 [6]. Решетка двумерного ФК образована двумя типами стержней: четыре стержня с e=9,5 (черные кружки) и остальные – с e=11,56 (белые кружки). Диаметр стержней – 0,2а, где а – постоянная решетки. В решетке сформированы два параллельных волновода: общая шина и шина вывода. Две одинаковых РП симметрично расположены между волноводами (между черными стержнями). Они имеют вид ячейки двумерного ФК с точечным дефектом в центре (диаметр центрального стержня – 0,05а, e=6,6). Расстояние между ячейками, равное 5а, выбрано для уравнивания их добротности, которая достигает 1000. Две РП нужны для создания двух мод, одинаковых по частоте, но зеркально симметричных относительно плоскости, перпендикулярной к линии волноводов. На рис. 9 показано распределение напряженности поля в стационарном состоянии. Синий цвет соответствует положительному максимуму, черный – отрицательному минимуму, светло-серый – нулевому уровню напряженности поля.
Проведенное машинное моделирование [6], показало, что при выбранных параметрах ФК сигналы, распространяющиеся в обратном направлении в шине вывода, практически полностью компенсируются (на рисунке их следов не видно), а амплитуды сигналов, распространяющихся в прямом направлении составляют, 99% от резонансных в шине вывода и практически отсутствуют – в общей шине (на рисунке их также не видно).
В [6] описано и другое схемное решение, основанное на более сложном расчете механизма компенсации, где требуется только одна РП при диаметре центрального стержня 0,6а и других соотношениях e окружающих стержней.
Фотонный кристалл с управляемой шириной запрещенной зоны
Описанные выше ФК формировались так, что ширина их запрещенной зоны была фиксированной и неуправляемой. В 1999 году усилиями группы Саджива Джона (Sajeev John из университета Торонто) удалось создать структуру фотонного кристалла с управляемой шириной запрещенной зоны. ФК построен на основе искусственного кристалла опала, причем воздушные пустоты кристалла заполняют кремнием, затем субстанцию опала вытравливают, формируя инверсную опалу кристаллическую структуру с периодически расположенными сферическими пустотами (рис. 10) [7]. Запрещенная зона данной структуры препятствует распространению длин волн в диапазоне 1380–1620 нм (8% относительно центральной длины волны 1500 нм). Для управления шириной запрещенной зоны внутренние поверхности сфер покрывались (методом инфильтрации) жидкокристаллическим нематиком с низким коэффициентом преломления (темно-голубая полусфера на верхнем срезе кристалла, рис. 10). В результате относительная ширина запрещенной зоны уменьшилась с 8 до 1,6%. Кроме того, прикладывая внешнее магнитное поле, можно управлять шириной запрещенной зоны в диапазоне 1,6–0%. Этот эффект сравним с управлением потоком электронов в полупроводнике с помощью электрического поля.
Управление шириной запрещенной зоны с помощью магнитного поля позволит создать более эффективные и простые, чем на основе фильтров канала вывода, структуры коммутаторов (в том числе и распределенные, так как свет может коммутироваться в нужном направлении путем приложения поля к определенной области ФК). Кроме того, возможно более точно управлять положением луча, проходящего через распределенную структуру ФК, что облегчает его маршрутизацию – динамическую или статическую, в плоскости или пространстве. Однако еще предстоит преодолеть такие проблемы, как управление степенью инфильтрации жидких кристаллов и равномерность их распределения по внутренним поверхностям сфер.
Литература
1. Photonic Crystal Research. – http://jdj.mit.edu/photons/index.html
2. One-Dimentional Photonic Crystals. – http://jdj.mit.edu/photons/1d-crystal.html
3. Resonant Cavities in Photonic Crystals. – http://jdj.mit.edu/photons/resonant-cavities.html
4. Photonic Crystal Keeps Light Inside. – http://www.vacuum-solutions.com/main/article/01/7/2
5. Perfect Waveguide Intersection. – http://jdj.mit.edu/photons/cross.html.
(Полностью материал см. в работе: Johnson S.G., Manolatou Ch., Fan Sh., Villeneuve P.R., Joannopoulos J.D., Haus H.A. Elimination of Crosstalk in Waveguide Intersections. – Optics Letters, 1998, Dec, №23.
6. Fan Sh., Villeneuve P.R., Joannopoulos J.D., Haus H.A. Channel Drop Filters in Photonic Crystals. – Optics Express 4, 1998, 6 July, Vol. 3, №1.
7. Gaughan Richard. Researchers Create Tunable Photonic Bandgap Crystal. – Photonics Spectra, 2000, Jan. Vol. 34, №1.
Отзывы читателей