Мы очень бегло и фрагментарно рассмотрим основные тенденции и конструкционные направления в этой области, делая акцент на серийно производимые устройства. За рамками работы останутся технологические особенности изготовления МЭМС-гироскопов и многие важные характеристики. Но наша цель в ином — показать многообразие этих чрезвычайно важных приборов, возможно, сулящих
в ближайшем будущем технологическую революцию во многих прикладных областях.
Рассмотрим основополагающий принцип действия МЭМС-гироскопов. Практически все они — вибрационные гироскопы. Это означает, что в каждом из них есть рабочее тело, которое, в простейшем случае, совершает возвратно-поступательное движение в одной плоскости. Если поставить это тело на вращающуюся платформу, плоскость которой совпадает с плоскостью колебаний, то на колеблющуюся массу начнет действовать сила Кориолиса Fс = 2m[Ω × v], где Ω — вектор угловой скорости (перпендикулярен плоскости вращения), v —
вектор линейной скорости тела относительно вращающейся платформы, m — масса тела. Модуль Fс = 2mΩv ⋅ sin ϕ, где ϕ — угол между векторами линейной и угловой скорости. Следовательно, сила Кориолиса направлена перпендикулярно направлению колебаний (рис.1) и оси вращения. При противоположных направлениях движения сила Кориолиса также действует в противоположных направлениях. На этом и основан принцип вибрационного гироскопа.
Определив силу Кориолиса и зная линейную скорость тела, несложно вычислить угловую скорость и ее изменение (угловое ускорение). Задача упрощается, если линейная скорость колебаний v изменяется по синусоидальному закону v = v0sin wt. Тогда определение ускорения Кориолиса сводится к детектированию сигнала Ω, модулирующего несущую с частотой w:
аc = 2v0Ω sin wt. Данная задач давно и успешно решается в радиотехнике, в частности, с помощью квадратурных модуляторов/демодуляторов.
Балочные гироскопы
Все конструкции вибрационных гироскопов, при широком их разнообразии, можно свести к нескольким типам. Одними из самых первых были балочные гироскопы. Их принцип действия таков: консольную балку (пластину) заставляют колебаться с помощью пьезоэлементов в направлении оси Х
(рис.2). Под действием силы Кориолиса при вращении относительно оси Z, параллельной продольной оси балки, возбуждаются колебания вдоль оси Y. Они регистрируются другими пьезоэлементами.
Конструкции балок могут быть самыми разными. Например, в гироскопах ОАО «Элпа» БВГ-3 и БВГ-4 используется трехполюсный вибратор — стальная балка с поперечным сечением в виде равностороннего треугольника [1]. К каждой грани балки приклеено по пьезоэлементу: на нижней стороне – возбуждающий вибрацию, на боковых гранях – измерительные. Основной недостаток таких гироскопов — их низкая технологичность (сложно обеспечить стабильные параметры клеевого соединения металла и пьезокермики и т.п.). Поэтому во всем мире распространение получили так называемые биморфные вибрационные гироскопы.
В биморфных гироскопах резонатор представляет собой две склеенные пьезоэлектрические пластины, поляризованные в противоположных направлениях. К пластинам (или к одной из них) прикладывают напряжение, одна пластина начинает сжиматься, другая растягиваться, в результате возникают колебания. При вращении под действием силы Кориолиса возбуждаются вторичные колебания, которые можно детектировать теми же электродами. По данному принципу построен, в частности, вибрационный гироскоп БВГ-500 ("Элпа").
Отметим, что конструкция резонатора может быть гораздо сложнее описанной. Так, один из лидеров (и зачинателей) промышленного освоения вибрационных пьезоэлектрических гироскопов — компания Murata — запатентовала структуру (приоритет от 28 октября 2002 года) [2], в которой резонатор представляет собой пару колеблющихся в противофазе пластин (рис.3). Пластины либо биморфные, либо наклеенные на металлическое основание униморфные. Каждая из пластин состоит из трех частей с противоположными направлениями поляризации. При вращении относительно оси Z возникают вторичные колебания (вдоль длины пластин). Хотя первичные колебания пластин происходят в противофазе, сигналы их генерации синфазны. Вторичные же колебания, обусловленные силой Кориолиса, вызывают дополнительные противофазные сигналы на электродах, разность которых пропорциональна угловой скорости вращения.
Таким образом, с помощью дифференциальной схемы можно детектировать эти сигналы. При этом используются те же электроды, что и для генерации первичных колебаний.
Компания Murata известна на рынке биморфыми пьезоэлектрическими гироскопами ENV-05. Недавно на смену им пришли более совершенные ENC-03R. Это миниатюрное устройство (8×4×2 мм) весом 0,2 г обладает впечатляющими характеристиками (cм. таблицу). Схема включения устройства также проста (рис.4).
Основной недостаток пьезокерамических вибрационных гироскопов — температурная нестабильность параметров, обусловленная свойствами пьезокерамики. Компенсировать его попытались — и не без успеха — специалисты компании Epson, создавшие совместно с компанией NGK Insulators новый пьезоэлектрический гироскоп XV-3500CB. Его отличает, помимо оригинальной конструкции (рис.5), использование кварца в качестве пьезоэлемента. В результате в диапазоне измерений ±100°/с удалось достичь приемлемой температурной стабильности — 5% (см. таблицу) при миниатюрном корпусе (5×3,2×1,3 мм).
Гироскопы-камертоны
Одна из важнейших конструкций резонатора гироскопа — в форме камертона, tuning fork (TF). Принцип действия такого датчика (рис.6) прост: колеблющиеся в одной плоскости в противофазе массы при вращении вокруг вертикальной оси начинают совершать колебания в перпендикулярной плоскости. Возможно, первым МЭМС-гироскопом, использующим этот принцип, стал гироскоп [3], созданный в компании Charles Stark Draper Laboratory (www.draper.com) — бывшей лаборатории Драпера Массачусетского технологического института. Он был создан еще в 1993 году [4, 5]. Базовая патентованная конструкция TF-гироскопа представляет собой рамку с двумя осцилляторами, колеблющимися в противофазе (навстречу друг другу) вдоль оси Х (рис.7). Колебания генерируются путем подачи напряжения на гребенчатые приводы. При этом под действием электростатической силы рабочие тела осцилляторов подталкиваются друг к другу. Возвратное движение происходит за счет микропружин. При вращении вокруг оси Y рамка колеблется в вертикальной плоскости (перпендикулярной подложке МЭМС): один осциллятор будет подниматься, другой — опускаться и наоборот. На верхнюю часть рамки и на подложку нанесены тестовые электроды. При колебаниях в вертикальной плоскости емкость между ними начнет изменяться, что можно детектировать и определить угловую скорость вращения.
Описанный принцип реализован компанией Fujitsu в серии МЭМС-гироскопов S1BG. Их TF-резонатор выполнен из хорошо известного пьезоэлектрика LiNbO3. Гироскоп работает в диапазоне ±60°С, чувствительность — 25±2,5 мВ/°/с, линейность — 0,5%, напряжение питания — 5 В, ток потребления —
не более 6 мА. Габариты корпуса — 12,4×8,4×12,5 мм, рабочий диапазон температур — -40...+85°С.
Компания Fujitsu анонсировала и гироскоп S1DG, который определяет скорость вращения одновременно по двум осям. Заявленный динамический диапазон — ±300°/с, чувствительность — 0,67±20% мВ/°/с, линейность — 0,5%, напряжение питания — 5 В, ток потребления — 5 мА. Габариты корпуса — 6×8×1,3 мм, рабочий диапазон температур —
-5...+75°С.
В скором времени число серийно производимых гироскопов данного типа пополнят и изделия компании Honeywell — одноосевые гироскопы семейства GG1178 (рис.9). Семейство будет представлено приборами с динамическим диапазоном ±75°/с, ±150°/с и ±300°/с (см. таблицу), корпус — LCC-14 (9,78×9,27×4,57 мм).
Гироскопы Analog Devices по технологии iMEMS
Один из основных недостатков рассмотренных гироскопов — сильная восприимчивость к линейным нагрузкам. Кроме того, технологически сложно массово производить МЭМС с колебаниями в вертикальной плоскости — это противоречит принципу планарной технологии. Преодолеть эти проблемы в значительной степени удалось, используя МЭМС-гироскопы, в которых направления колебаний — как первичных, так и вызванных ускорением Кориолиса, — лежат в плоскости подложки. В известной степени такие гироскопы можно рассматривать как вариации гироскопа-камертона. Значительных успехов в данной области достигла компания Analog Devices (www.analog.com), которой удалось создать технологию iMEMS и на ее основе производить гироскопы серий ADXRS и ADIS. Поскольку эта компания — безусловный лидер в промышленном производстве данного класса гироскопов, остановимся на ее продукции подробнее.
Основной элемент гироскопа серии ADXRS — это закрепленная на гибких подвесках рамка, внутри которой совершает поступательные колебательные движения некая масса (рис.10) [6]. Для определенности положим, что колебания происходят вдоль оси Х. Подвесы рамки допускают ее колебания только вдоль оси Y. Колебания массы возбуждаются электростатически, с помощью гребенки зубцов (рис.11).
На внешней поверхности рамки и на подложке расположены гребенки контактов, образующих систему плоских конденсаторов.
При колебаниях рамки относительно подложки расстояния между этими зубцами изменяются, соответственно изменяется и емкость. Когда подложка неподвижна (или движется прямолинейно и равномерно), рамка не колеблется. Если же начать вращать такую структуру вокруг оси Z, то под действием силы Кориолиса возникнут вынужденные колебания рамки вдоль оси Y.
Однако остается проблема компенсации линейных ускорений. В приборах серии ADXRS она решена за счет размещения на одной подложке двух одинаковых структур, в которых генерируются строго противофазные колебания (рис.11). Измерительные сигналы, снимаемые с емкостей обоих структур, поступают в дифференциальную схему. При этом сигналы, вызванные колебаниями под воздействием ускорения Кориолиса, будут складываться, а синфазные составляющие, обусловленные линейными ускорениями, — вычитаться.
Отметим, что приведенная конструкция проста только в описании. Элементы этих МЭМС чрезвычайно малы. Амплитуды колебаний зубцов гребенок (обкладок конденсаторов) составляет 16×10-15 м — меньше межатомного расстояния! Изменение емкости такого конденсатора — 12×10-21 Ф [6].
Очевидно, чтобы обработать сигнал с таких емкостей, нужны прецизионные усилители, корреляционные методы обработки и т.п. Вся необходимая электроника интегрирована в ту же СБИС. В результате гироскопы серии ADXRS демонстрируют достаточно высокие результаты (см. таблицу).
Для примера рассмотрим гироскоп ADXRS300 (рис.12). Это миниатюрное устройство (размер корпуса LCPBGA-32 —
7×7×3 мм) обеспечивает работу в диапазоне угловых скоростей ±300°/с (относительно вертикальной оси Z). При этом прибор устойчив к линейным ударным нагрузкам до 2000 g. Влияние линейных ускорений (вдоль любой оси) составляет 0,2°/с/g. Собственная частота резонаторов — 14 кГц. СБИС оснащена схемой самотестирования, встроенным датчиком температуры, встроенным повышающим преобразователем напряжения (на переключаемых конденсаторах) для генерации колебаний резонатора (для этого необходимо напряжение порядка 20 В) и встроенным источником опорного напряжения. Гироскопы рассмотренного семейства — это одноосевые приборы, с линейным аналоговым выходом (напряжение на выходе меняется по линейному закону в зависимости от частоты вращения).
Компания Analog Devices выпускает и семейство гироскопов ADIS. Оно построено на базе серии ADXRS, но с расширенными функциональными возможностями — со встроенными АЦП, средствами термокомпенсации и т.п. Эти гироскопы работают в диапазонах ±80 и ±300°/с, а некоторые обладают возможностью перестройки динамического диапазона в пределах от ±80 до ±320°/с. Характерный пример — гироскоп ADIS16255 (рис.13). Помимо датчика угловой скорости он оснащен основным 14-разряным АЦП для оцифровки сигнала датчика, вспомогательными 12-разрядными ЦАП и АЦП, датчиком температуры с оцифрованным (12 бит) выходом, встроенной системой автотестирования и калибровки, SPI-интерфейсом и т.д. (рис.13). При динамическом диапазоне ±320°/с чувствительность составляет 0,07°/с/LSB (LSB — младший бит оцифрованного сигнала).
Отметим, что недавно компания анонсировала трехосевой гироскоп ADIS16350 (рис.14) — интегрированный модуль, в состав которого, помимо трехосевого гироскопа (±320°С), входит и трехосевой датчик линейных ускорений (акселерометр) с диапазоном измерений ±10 g. Сигналы обоих датчиков оцифровываются АЦП с разрешением 14 разрядов. Модуль оснащен вспомогательными 12-разрядными ЦАП и АЦП. Обмен данными возможен через SPI-интерфейс. Детали конструкции не оглашаются, однако судя по размерам модуля (22,7×23,2×22,9 мм), он представляет собой микросборку.
Гироскопы с диском-вибратором
Еще одна разновидность вибрационных гироскопов — устройства с диском-резонатором. Один из первых гироскопов с дисковым резонатором был создан сотрудниками лаборатории твердотельной электроники Мичиганского универститета в 1994 году [7, 8]. Тогда был продемонстрирован прототип гироскопа (рис.15а), представлявшего собой никелевый диск диаметром 1 мм — обод с восемью полукруглыми спицами, жестко закрепленными в центре на поликремниевой подложке. С внешней от обода стороны с небольшим зазором располагаются приводящие, измерительные и корректирующие электроды. Под действием прикладываемого к приводящим электродам напряжения генерируется основная мода колебаний (например, вдоль оси Y) — диск начинает вытягиваться вдоль оси Y и сжиматься вдоль оси Х (рис.16). Если подложка (а с ней и диск) начинает вращаться вокруг оси Z, сила Кориолиса стремится вызывать колебания в направлении оси X.
Возникает вторая (измерительная) мода колебаний — главная ось эллипса смещается на 45°. Амплитуда этих колебаний qsens пропорциональна угловой скорости вращения WZ:
qsens = 4Ag⋅Q/w0⋅qdrive⋅WZ, где Ag ≈ 0,37 — так называемое угловое усиление кольцевой структуры (константа, определяемая геометрией и высокостабильная при изменении температруры), Q — добротность резонатора, w0 — резонансная частота колебаний, qdrive — амплитуда в основной моде (без вращения). Эти амплитуды регистрируют с помощью емкостных датчиков с внешней стороны обода в соответствующих точках.
Данная конструкция обладает рядом существенных особенностей. Прежде всего, благодаря симметричной структуре резонансные частоты в основной и измерительной моде одинаковы. Кроме того, узловые точки обеих мод совпадают. Такой резонатор обладает высокой добротностью, следовательно — потенциально большим разрешением измерения угловой скорости. Он мало восприимчив к ударам и вибрациям. Кроме того, неизбежные производственные дефекты (например, асимметрию) резонатора можно устранить электронным путем, используя специальные подстроечные электроды [8].
Уже первый образец показал добротность Q ~ 2000 и разрешение 0,5°/с. При динамическом диапазоне ±100°/с прибор демонстрировал нелинейность на уровне 0,2%. Впоследствии (1998 год) была разработана технология создания подобных структур на поликремнии (рис.15б) [9]. Диаметр вибратора составил 1,1 мм при толщине диска 80 мкм (ширина обода и спиц — 4 мкм). Добротность прототипа оказалась на уровне 1200 (в глубоком вакууме). Однако уже в 2002 году разработчики представили МЭМС-гироскоп на монокристалле кремния с ориентацией (111) на стеклянной подложке (рис.15в). При диаметре диска 2,7 мм и толщине 150 мкм добротность резонатора составила 12000. Это обеспечило разрешение 132 мВ/°/с, соответствующую точность 0,002°/с (7,2°/ч) и нелинейность 0,02%. Дрейф нуля находился в пределах 1°/с за 10 часов без термокомпенсации [10].
Сходный принцип применен в гироскопе с резонатором в виде восьмиконечной звезды, образованной суперпозицией двух квадратов (рис.17) [11]. Такая конструкция позволяет использовать для измерений угловой скорости колебательные моды более высоких порядков, а также обеспечивает более точную электронную балансировку резонатора. В результате добротность резонатора из монокристаллического кремния составила 25000 и выше — до 115000.
В серийных приборах дисковый резонатор использован в гироскопах компании Silicon Sensing Systems (www.siliconsensing.com), совместного дочернего предприятия фирм Sumitomo Precision Products Company и British Aerospace Systems and Equipment (сейчас — BAE Systems). Гироскопы этой компании используют описанный принцип, но их отличает не емкостной, а индукционный метод генерации и определения амплитуды вынужденных колебаний [12]. Резонатор находится в постоянном магнитном поле, перпендикулярном плоскости диска. Источник поля — магнит из самария-кобальта, расположенный над вибратором диаметром 6 мм (рис.18). Чувствительные элементы и приводы представляют собой токовые петли.
Компания предлагает несколько линеек приборов — SRC03, SRC05, GYRO-SiRRS01 (разработан еще компанией BAE Systems) и др. (см. таблицу). В частности, гироскопы серии SRC03 выпускаются в корпусах с габаритами 29×29×18,4 мм.
Все приборы Silicon Sensing Systems высокоустойчивы к ударным и вибрационным воздействиям — они работают при линейных ускорениях свыше 100 g и ударах до 200 g (1 мс). Продукция этой компании в значительной мере ориентирована на специальные применения.
Вращательные вибрационные микрогироскопы
Развивается и направление вращательных дисковых резонаторов. Первые значимые работы в этой области появились в начале 1990-х годов. Они проводились в Центре датчиков и приводов Калифорнийского университета в Беркли [13, 14], а также в лаборатории Драпера (в Кембридже) [15]. Патенты в этой области принадлежат и компании Analog Devices [16].
Суть метода — диск-резонатор крепят на торсионах (как правило, на четырех) и электростатически (например, гребенчатыми приводами, связанными со спицами диска) вызывают крутильные колебания относительно вертикальной оси Z (рис.19) [13]. Если такой вибрирующий диск вращается вокруг оси, лежащей в его плоскости (например, X), под действием силы Кориолиса возникают колебания перпендикулярно плоскости диска. Один край диска (в нашем случае — вдоль оси Y) начнет подниматься, другой — опускаться в зависимости от текущего направления крутильных колебаний. Если гироскоп вращать одновременно вокруг осей X и Y, возникнут колебания относительно осей Y и X, соответственно. На поверхности диска формируют плоский электрод, на подложке под диском —
четыре секторных электрода (соответственно, по осям X и Y). Измеряя изменение емкости между диском и этими электродами на подложке, можно определить амплитуды вертикальных колебаний и угловые скорости вращения одновременно вокруг двух осей [14].
Существует множество вариаций данного метода. Например, диск закреплен на оси, препятствующей его колебаниям в вертикальной плоскости. Но ось связана с внешней рамкой, которая может совершать вынужденные колебания, которые и детектируются емкостными датчиками [17]. Однако несмотря на более чем десятилетнюю историю, данные конструкции пока не нашли воплощения в серийных изделиях. Видимо, причина в технологических сложностях ее массовой реализации. Тем не менее, были сообщения о применении такой конструкции в МЭМС-гироскопах отечественной компании «Гирооптика»
(www.gyro.ru). Фирма заявляла о создании датчиков угловых скоростей 7ЧСК(У)-Р и микросборок приборов на их основе. Объявленный диапазон измерений ±360°/с, нестабильность —
не более 0,5%, стойкость к одиночным ударам до 16000 g [18]. Однако информации о серийной продукции этой компании нет.
В заключение отметим еще один перспективный тип конструкции — так называемый гироскоп с распределенной массой [19], созданный в Лаборатории микросистем калифорнийского университета в Ирвине (UCI MicroSystems Laboratory). Возглавляет эту лабораторию выпускник мехмата МГУ 1991 года Андрей Шкел. Предложенная модель представляет собой несколько осцилляторов, колеблющихся с одинаковой фазой и частотой и расположенных симметрично относительно центра связывающего их каркаса (рис.20). При радиальном направлении вибраций осцилляторов вращение вокруг вертикальной оси гироскопа приведет к возникновению силы Кориолиса, направленной по касательной к каркасу. Эта сила вызывает крутильные колебания, которые регистрируются емкостными датчиками.
Достоинства данной конструкции обусловлены двумя факторами. Во-первых, колебания осцилляторов происходят одновременно в нескольких осесимметричных направлениях. Кроме того, первичные и вторичные (измерительные) колебания — разных типов, линейные и крутильные. В результате существенно снижается воздействие первичных колебаний на датчики измерительных колебаний. Благодаря этому сигнал, соответствующий нулевой угловой скорости, оказывается высокостабильным. Снижается и уровень шумов. Принцип детектирования кругового смещения позволяет устранять воздействие линейных ускорений. Кроме того, поскольку все вызывающие генерацию силы попарно противоположны и равны по величине, их сумма в точке крепления вибратора к подложке (в центре) практически равна нулю. Поэтому генерируемые колебания не передаются на подложку. Наконец, многоосевая структура минимизирует влияние различных производственных дефектов, внутренних напряжений структуры, анизотропных свойств материала конструкции.
Все это позволяет существенно увеличить амплитуду колебаний осцилляторов, а пропорционально ей — и амплитуду измерительных колебаний. В результате существенно возрастают чувствительность гироскопа и ширина его рабочей полосы частот.
Таким образом, при всем разнообразии конструкций МЭМС-гироскопов только пьезогироскопы, а также вибрационные гироскопы компании Analog Devices можно отнести к действительно массовым изделиям. Но все эти устройства при видимой простоте вбирают в себя новейшие технологические
достижения, обсуждение которых осталось за рамками данной
статьи. Отметим, что это еще и достаточно молодое направление, настоящий расцвет которого еще впереди. Залог чему —
чрезвычайно широкий спектр применений, от фото- и видеокамер, компьютерных перчаток-манипуляторов, систем автомобильной электроники до средств навигации самого разного, в том числе и военного, назначения (такие гироскопы уже встраивают в управляемые снаряды). Сейчас МЭМС-датчики планируют производить такие компании, как Freescale, Kionix, Hitachi Metals, Oki Electric и STMicroelectronics. Важно, что определенные успехи на поприще МЭМС-датчиков угловых скоростей достигнуты и российскими компаниями — остается только пожелать им всемерно развивать свои производственные и технологические возможности.
Литература
1. Сафронов А. и др. Малогабаритные пьезоэлектрические вибрационные гироскопы: особенности и области применения. — ЭЛЕКТРОНИКА: НТБ, 2006, №8, с.62–64.
2. European Patent Application EP 1416249 A1, приоритет от 28 октября 2002 года.
3. US Patent 6.862.934 , приоритет от 10 апреля 2003 года.
4. Bernstein, J. et al. A micromachined comb-drive tuning fork rate gyroscope. —
Proc. IEEE Micro Electro Mechanical Systems Workshop (MEMS ’93), Fort Lauderdale, pp. 143-148.
5. M. Weinberg, et al. A Micromechanical Comb Drive Tuning Fork Gyroscope for Commercial Applications, 2nd St. Petersburg International Conference on Gyroscopic Technology and Navigation, St. Petersburg, Russia, May 1995.
6. Geen J., Krakauer D. New iMEMS Angular-Rate-Sensing Gyroscope. —
Analog Dialogue, 37–03 (2003), www.analog.com.
7. Putty M.W. A micromachined vibrating ring gyroscope. — Ph.D. dissertation, University of Michigan, Ann Arbor, March 1995.
8. Putty M.W. and Najafi K. A Micromachined Vibrating Ring Gyroscope. —
Solid-State Sensors and Actuators Workshop, Hilton Head, SC, June 1994, p. 213–220.
9. Ayazi F., Najafi K. A HARPSS Polysilicon Vibrating Ring Gyroscope. — Journal Of Microelectromechanical Systems, Vol. 10, № 2, June 2001.
10. Guohong He, Khalil Najafi. A Single-Crystal Silicon Vibrating Ring Gyroscope. MEMS 2002: micro electro mechanical systems, Las Vegas NV, 20–24 January 2002.
11. Zaman M.F., Sharma A., Amini B.V., and Ayazi F. The resonating star gyroscope. — Proc. IEEE Micro Electro Mechanical Systems Conference (MEMS’05), Miami, FL, Jan. 2005, p. 355–358.
12. Hopkins I. Performance and Design of a Silicon Micromachined Gyro. —
Silicon Sensing Systems, 2001.
13. Juneau T., Pisano A. P., and Smith J. H. Dual axis operation of a micromachined rate gyroscope. — Proc., IEEE 1997 Int. Conf. on Solid State Sensors and Actuators (Tranducers ’97), Chicago, June 16–19, p. 883–886.
14. US Patent 6,067,858, приоритет от 30 мая 1997 года.
15. US Patent 5535902, приоритет от 22 мая 1995 года.
16. US Patent 5635640, приоритет от 3 июня 1997 года.
17. Горнев Е.С., Зайцев Н.А. и др. Обзор микрогироскопов, сформированных по технологии поверхностной или объемной микромеханики. — Нано- и микросистемная техника, 2002, № 8, с. 2–6.
18. Попова И.В. и др. Микромеханические датчики и системы, практические результаты и перспективы развития. — XII Санкт-Петербургская международная конференция по интегрированным навигационным системам, май, 2005.
19. Cenk Acar and Andrei M. Shkel. An Approach for Increasing Drive-Mode Bandwidth of MEMS Vibratory Gyroscopes. — Journal оf Microelectromechanical Systems, Vol. 14, №3, June 2005, p.520–528.