Рассмотрена возможность использования базовых матричных кристаллов (БМК) для замещения электронной компонентной базы (ЭКБ) импортного производства. Отмечено, что полузаказными схемами на основе БМК можно заместить существенную часть номенклатуры импортных микросхем.

sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
ISSN 1992-4178
Книги по электронике
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по электронике
Белоус А.И., Емельянов В.А., Турцевич А.С.
Другие серии книг:
Мир электроники
Мир радиоэлектроники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир фотоники
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Выпуск #2/2016
В.В.Алексеев, В.А.Телец, В.И.Эннс, В.В.Эннс
Импортозамещение ЭКБ: базовые матричные кристаллы
Просмотры: 4010
Рассмотрена возможность использования базовых матричных кристаллов (БМК) для замещения электронной компонентной базы (ЭКБ) импортного производства. Отмечено, что полузаказными схемами на основе БМК можно заместить существенную часть номенклатуры импортных микросхем.
Б


МК подразделяются на цифровые и аналого-цифровые (АЦБМК). Первые представляют собой микросхемы, в состав которых входят только цифровые ячейки, вторые содержат также аналоговые блоки. Конфигурирование БМК в готовую полузаказную микросхему выполняется посредством разработки металлических соединений между ячейками (разработки "зашивки").

Применение цифровых и аналого-цифровых БМК позволяет решить несколько задач. Во-первых, сложный модуль, сос­тоящий из многих микросхем, трансформируется в одну компактную микросхему. Во-вторых, широкая номенклатура различных универсальных микросхем может быть воспроизведена путем применения соответствующих "зашивок". Большинство используемых в аппаратуре импортных микросхем изготовлено по технологиям 10–15-летней давности, поэтому полузаказные микросхемы на основе БМК, выполненные по современным технологиям, имеют схожие или улучшенные характеристики. В-третьих, упрощается унификация, поскольку технические решения предусматривают единые напряжения питания, входы-выходы, элементы, одни и те же показатели стойкости к неблагоприятным воздействиям и надежности.

В России разработкой и производством БМК занимаются несколько компаний [1–4]. Современные кристаллы изготавливают по технологиям КМОП и КМОП КНИ с проектными нормами 180 и 90 нм.

Предварительный анализ перечня используемых импортных микросхем показал, что в 40% случаев для их замены можно применять БМК (рис.1). По ряду позиций есть готовые решения в виде "зашивок", в остальных случаях необходимо разрабатывать новые "зашивки" или дорабатывать существующие БМК.

Емкость цифровой части современных АЦБМК составляет порядка 100 тыс. цифровых вентилей, емкость цифровых БМК – до 10 млн. вентилей. Это соответствует ПЛИС XCV200 и Virtex 6 фирмы Xilinx.

Библиотека элементов цифровых БМК содержит более 500 последовательностных и комбинационных элементов, более 50 ячеек ввода-вывода, а также сложнофункциональные (СФ) блоки, такие как LVDS-интерфейс, ОЗУ, FIFO-буфер, синтезаторы частот, супервизоры питания и др. Для проектирования "зашивок" цифрового БМК используются современные САПР разработки универсальных и заказных схем.

В состав современных аналого-цифровых БМК могут входить различные блоки (см. таблицу) [5]. На основе одной "зашивки" АЦБМК можно реализовать как несколько микросхем, так и отдельный функциональный модуль. Характерный пример – многоканальная схема аналого-цифрового преобразования (рис.2), замещающая собой сразу несколько типов микросхем АЦП и ЦАП. Основные характеристики схемы:

 • количество входных каналов АЦП: 16;

 • количество выходных каналов ЦАП: 8;

 • разрядность: 14 бит;

 • интегральная нелинейность: не более ±4 МЗР;

 • дифференциальная нелинейность: не более ±1 МЗР;

 • время преобразования на канал: 4 мкс;

 • задействованная емкость БМК: 80%.

Еще один пример – схема обработки данных датчиков температуры, представляющая собой законченный модуль сбора телеметрической информации (рис.3). Схема имеет следующие характеристики:

 • возможность работы с резистивными и диодными датчиками;

 • одновременное обслуживание 18 датчиков;

 • регулировка токов и диапазонов измерений температуры;

 • два цифровых интерфейса ввода-вывода информации;

 • частота выборок сигналов до 15 Квыб/с при тактовой частоте 1 МГц;

 • задействованная емкость БМК: 70%.

По сравнению с решениями на стандартных микросхемах при аналогичных технических характеристиках указанные "зашивки" отличаются меньшими стои­мостью, площадью модуля, более высокой надежностью и стойкостью к внешним факторам. В частности, за счет использования КНИ КМОП технологии гарантируется работоспособность при температурах окружающей среды от –60 до 125°C и более. Также микросхемы обладают высокой стойкостью к специальным воздействующим факторам, включая факторы космического пространства (гарантированное отсутствие отказов при воздействии тяжелых заряженных частиц и стойкость к накопленной дозе) и высокой надежностью – наработка на отказ составляет до 200 тыс. ч. Применение "зашивки" БМК вместо платы с несколькими микросхемами повышает надежность модуля в несколько раз.

Время и затраты на разработку и производство одной полузаказной микросхемы существенно ниже, чем при использовании альтернативных решений: заказной микросхемы без сложнофункциональных блоков и микросхемы, выполненной на основе СФ-блоков (рис.4).

На одной полупроводниковой пластине могут располагаться до 10 различных проектов "зашивок", что существенно снижает стоимость производства небольших партий микросхем. При этом в БМК значительно уменьшается стоимость фотошаблонов, так как при проектировании новой "зашивки" используется всего одна десятая часть комплекта фотошаблонов.

Проектирование микросхем на основе БМК стимулирует вовлечение в разработку инженеров предприя­тий по производству аппаратуры, что объясняется наличием инфраструктуры, упрощающей процесс разработки: библиотек элементов, правил проектирования и набора типовых решений. Это особенно важно в области аналогового проектирования, где наблюдается острый дефицит навыков и специалистов. Если предприятие активно участвует в разработке микросхем, предназначенных для использования в собственной аппаратуре, существенно повышаются качество проектирования и вероятность быстрого внедрения, а также технический уровень аппаратуры.

Применение БМК оправданно, в частности, при изготовлении специализированных узкоцелевых микросхем за счет предприятий-потребителей, так как в рамках государственных программ, как правило, финансируют­ся разработки микросхем широкого применения.

Сроки реализации проектов на основе БМК или АЦБМК составляют от трех месяцев для несложных изделий до шести-девяти месяцев – для сложных схем, требующих нескольких итераций отладки.

Несмотря на обширную номенклатуру доступных микросхем, за рубежом направление БМК активно развивается, прежде всего в области космических и научных разработок. На рынке представлены такие компании, как Triad Semiconductor (США), eASIC (США), Toshiba (Япония) и др., разработавшие широкую номенклатуру БМК.

В заключение отметим, что полузаказными схемами на основе БМК можно заместить существенную часть номенклатуры импортных микросхем, при этом необходимое время и затраты на разработку и поддержание производства будут существенно меньше по сравнению с альтернативными вариантами. Использование БМК целесообразно для создания значительной части малых, средних и больших универсальных микросхем, для разработки новой аппаратуры с улучшенными характеристиками и для замены выполненных по старым техническим решениям блоков современными компактными на основе БМК.

Литература

1. Темирбулатов М.С., Эннс В.И. Космическая программа и радиационная стойкость современных интегральных микросхем // Электронная техника. 2015. Вып. 2 (158). С. 105–121. (Серия 3).

2. www.dcsoyuz.com

3. www.tcen.ru

4. www.angstrem.ru

5. Эннс В.И., Кобзев Ю.М. Проектирование аналоговых КМОП-микросхем // Краткий справочник разработчика. – М.: Горячая линия-Телеком, 2005.
 
 Отзывы читателей
Разработка: студия Green Art