Новое поколение детекторов рентгеновского излучения на пиксельных матрицах
Последние достижения в области микроэлектроники позволили изготавливать на стеклянной подложке размером 50х50 см многослойные матрицы детекторов, содержащие аморфные тонкопленочные транзисторы. Поскольку под действием электрического поля возбужденный в селеновом слое заряд направленно движется к коллектору транзистора, формирующего пиксель, координатное разрешение такого детектора высокое. Слой аморфного селена может быть нанесен достаточно простым и дешевым методом испарения.
В детекторы (панели) "непрямого" преобразования входят сцинтилляторы, преобразующие рентгеновское излучение в оптическое, которое возбуждает в пиксельной матрице на основе аморфных кремниевых фотодиодов, МОП-транзисторов или ПЗС носители заряда (электроны и дырки). Генерированный заряд накапливается в конденсаторах и затем с помощью транзисторной матрицы последовательно передается на выход детектора для преобразования в цифровой сигнал. Сцинтиллятор детектора может быть выполнен на так называемом структурированном или аморфном материале. В неструктурированном сцинтилляторе свет попадает и в соседний пиксель, что приводит к ухудшению разрешения. Для решения этой проблемы используют структурированный материал на основе цезия (или иодида цезия – CsI), состоящий из трубок шириной ~5–10 мкм, препятствующих боковому распространению света.
Однако рентгеновские панели с тонкопленочными пиксельными матрицами на аморфном кремнии имеют серьезные недостатки. Это – относительно высокий уровень шумов, создаваемых токами утечки транзисторов и диодов на аморфном кремнии, а главное необходимость подключения к каждой строке и столбцу матрицы внешних электронных схем (зарядовых усилителей, мультиплексоров и драйверов, рис.1), что ограничивает возможности повышения координатного разрешения и удешевления панели. Из-за этих недостатков тонкопленочные экраны, по-видимому, не могут удовлетворять требованиям, предъявляемым к экранам нового поколения (см. таблицу).
Ведущими российскими исследовательскими группами НТЦ "Курчатовский институт", Физического института им. Лебедева (ФИАН), Института ядерных исследований (ИЯИ) проведены поисковые работы по созданию элементной базы координатных детекторов нового поколения – так называемых функционально-интегрированных структур [1–12].
Рассмотрим возможную реализацию твердотельных рентгеновских экранов на основе мозаики координатных детекторов, представляющих собой специализированные кремниевые микросхемы, способные непосредственно (или косвенно, с помощью дополнительных полупроводниковых материалов) регистрировать радиационное излучение. Такой подход позволяет достичь экстремально высоких характеристик рентгеновских экранов. Однако, к сожалению, предлагаемое техническое решение имеет существенный недостаток, заключающийся в образовании в рентгеновской панели большого формата так называемой "мертвый зоны", что приводит к появлению на одиночном рентгеновском снимке решетки (рис.2). По мере совершенствования технологии изготовления кремниевых чипов размер "мертвой зоны" может быть сведен к минимуму и практически мало влиять на качество изображения (рис.3). Более того, появление "мертвой зоны" можно легко исключить путем проведения повторного снимка при механическом смещении панели под углом 45 градусов на 1/2 длины пикселя и соответствующей компьютерной обработки полученных снимков. К сожалению, такая процедура приводит к увеличению дозы облучения объекта в два раза. Правда, во многих случаях это допустимо.
Существуют три основных варианта построения мозаичных рентгеновских экранов на основе кремниевых специализированных микросхем координатных детекторов, а именно квантового, аналогового и цифрового. Квантовый детектор [10] создан в результате попытки реализовать теоретически идеальный способ регистрации радиационного (рентгеновского) излучения, о котором с теоретически максимальной точностью известно "все": энергия, координаты и время прихода. Квантовый детектор представляет собой прямоугольную матрицу функционально-интегрированных биполярных транзисторных структур с двумя эмиттерами (рис.4а). При попадании в транзисторную структуру детектора радиационной частицы-кванта (рис.4в) возбуждается, преимущественно в области пространственного заряда, ток ионизации, амплитуда и время нарастания которого регистрируются в цепи питания общего коллектора биполярных транзисторов, образующих пиксели матрицы. Координаты пикселя определяются по появлению электрических сигналов в соответствующих адресных линиях Xi и Yi.
Скорость поступления рентгеновских квантов составляет ~500 квантов/с на пиксель размером 140х140 мкм, т.е. скорость поступления квантов на адресную линию Pх » 2·106 квантов/с [2]. Это на два порядка ниже быстродействия детектора tм, которое определяется двумя параметрами: временем сбора и усиления ионизационного заряда в пикселе tсб » 5 нс и временем распространения сигнала в адресных линиях tр » 5 нс (при длине адресной линии l ~ 1см), т.е.:
...
Отсюда следует, что матрица площадью 1 см2 способна регистрировать и определять все параметры каждого кванта рентгеновского излучения, применяемого в медицинской технике. Однако с увеличением площади матрицы до S = 10х10 см возникает проблема, связанная с быстродействием, поскольку в этом случае tм @ 1/Px. Очевидно, площадь матрицы S @ 10х10 см следует считать предельной. Таким образом, экран большего формата, например 43х43 см, может иметь только мозаичную конструкцию.
Как уже отмечалось, матрица способна воспринимать рентгеновское излучение как с помощью нанесенных на ее поверхность сцинтиллятора или фотопроводника, так и непосредственно, т.е. с использованием в качестве элемента, регистрирующего рентгеновское излучение, области пространственного заряда коллектора (или комбинацию этих способов). Рентгеновские кванты с энергией E = 60 кэВ эффективно поглощаются кремнием только на глубине более 100 мкм (рис.5), поэтому, очевидно, интерес представляет возможность изготовления матрицы, состоящей из функционально-интегрированных структур на основе менее технологически отработанных в сравнении с кремнием полупроводниковых соединений, например арсенида галлия.
Следует отметить, что поскольку матрица имеет большое число адресных выводов X, Y (как и традиционные "аморфные" матрицы), с помощью периферийных устройств детектора необходимо обеспечить быстрое цифровое кодирование адресов Xi, Yi строк и столбцов матрицы. Это позволит резко сократить число выводов микросхемы детектора, которые связывают компоненты панели с внешними устройствами – аналого-цифровым преобразователем и компьютером. К сожалению, реализация в микросхеме детектора цифровых кодирующих устройств усложняет технологию его изготовления. Особенность детектора этого типа – отсутствие "памяти" у матрицы, в результате чего он передает внешним устройствам чрезмерно большой объем информации, в том числе и не нужную для формирования рентгеновского видеоизображения "избыточную информацию" о времени прихода каждого кванта. Это усложняет работу внешних устройств. Однако возможность регистрации таким детектором энергии отдельных квантов может оказаться весьма полезной для реализации "суперэкранов" с трехмерным голографическим изображением объекта, требующих использования монохроматического рентгеновского излучения.
Достоинство квантового детектора – возможность получения рентгеновских или иных радиационных изображений объекта теоретически максимально высокого качества. Недостатки – необходимость применения быстродействующих внешних устройств и компьютера, а также ограничение размеров элемента мозаики – не более 10х10 см.
В детекторах аналогового типа используется матрица, элементы которой способны "запоминать" суммарный заряд, возбужденный потоком рентгеновских квантов. Аналоговые детекторы, реализованные на монокристаллическом кремнии, как и квантовый детектор, регистрируют излучение с помощью люминофора экрана или непосредственно в области пространственного заряда транзистора.
На рис.6 соответственно показаны электрическая схема и структура пикселя аналогового детектора. Достоинство таких детекторов, по сравнению с предыдущими, – отсутствие жестких требований к быстродействию внешних устройств; возможность приема излучения высокой интенсивности, когда временное отделение одного кванта от другого невозможно, что обычно имеет место при приеме излучения в оптическом диапазоне частот. Недостатки – меньшая контрастность (динамический диапазон) из-за потерь, связанных с самопроизвольной релаксацией информационного заряда в пикселях матрицы и неточностью преобразования аналоговых сигналов в цифровые; технологические проблемы, аналогичные квантовому детектору.
Работа цифрового детектора мозаичного экрана основана на цифровом отсчете (запоминании) числа квантов, поступивших в каждый элемент матрицы, и запоминании аналогового сигнала, пропорционального выделенной ими энергии. Трехмерная конструкция детекторов этого типа состоит из двух изолированных и механически соединенных с помощью индиевых столбцов пиксельных матриц (рис.7). При этом первая матрица только принимает излучение, а вторая обрабатывает сигнал пикселя. Обе матрицы изготавливаются с помощью независимых технологических процессов, что позволяет наилучшим образом оптимизировать качество их исполнения. Очевидно, мозаичный экран, построенный на цифровых детекторах, позволяет получить теоретически максимально высокое качество изображения объекта в рентгеновском спектре излучений.
Следует отметить, что возможна и другая, более простая, реализация детектора, например когда принимающая излучение матрица представляет собой сборку из аморфных диодов и сцинтилляторов или матрицу прямого действия на p-i-n-диодах и резисторах (рис.8). Такой детектор не требует размещения по периферии кристалла специальных выводов для подключения управляющих устройств. Однако при использовании такой приемной матрицы нельзя получить теоретически предельное качество изображения.
В целом достоинства экрана на цифровом детекторе заключаются в наилучшем, по сравнению с экранами других типов, отношении сигнал/шум, в высокой контрастности, большом динамическом диапазоне, координатной точности и т.п. Его недостатки – высокая стоимость и сложность изготовления.
Из рассмотренного следует, что для создания высококачественных рентгеновских экранов нового поколения наиболее перспективны мозаичные панели на детекторах с пиксельными матрицами на основе функционально-интегрированных структур. Каждое из приведенных здесь технических решений представляется весьма перспективным для создания таких мозаичных рентгеновских экранов, хотя сейчас сложно определить, какое из них окажется наиболее конкурентоспособным и рентабельным в будущем. Возможно, наиболее перспективны панели, построенные на основе "квантовых" детекторов, поскольку они дают полную информацию о рентгеновском излучении, проходящем через исследуемый объект. В любом случае необходимо проведение исследовательских работ по анализу эффективности предложенных технических решений.
Следует отметить, что в отечественной промышленности сегодня сложно использовать традиционные технические решения, поскольку в стране отсутствует технология формирования высококачественных аморфных полупроводниковых слоев, требуемых для рентгеновских экранов.
Литература
1. Мурашев В.Н., Грабчак В.П., Мостовой В.Н. и др. Нейтроны в исследованиях и индустрии. – В кн.: Труды пятой международной конференции по применению ядерной технологии. Крит, Греция, июнь: Сборник докладов.
2. Мурашев В.Н., Тарабрин Ю.В., Грабчак В.П., Мостовой В.Н. Позиционный детектор для регистрации нейтронов.– В кн.: Труды международной конференции по применению детекторов в авиации. США. Атлантик-Сити. 12–15 ноября 1996г: Сборник докладов.
3. Мурашев В.Н., Мелешко Е.А., Тарабрин Ю.А. и др. Полупроводниковые детекторы в физических и научных применениях.- В кн.: Труды пятой международной конференции. Рига. Латвия. Май 18–22, 1998: Сборник докладов.
4. Aleksandrov K.V., Mukhamedshin R.A., Murashev V. N. et al. Studies of Cosmic Rays In Energy Range of 1014–1016 eV, Primari Electrons at Energy of 0.1–10 TeV, Gamma-Rays at Energy of 30 GeV-1 TeV, Neutrons and Gamma-Rays in Solar Radiation, and Massive Exotic Charged Particles in Cosmic Radiation. Salt Lake City.-In: 26 Int. Cosmic Ray Conference, USA, 1999, 17–25 August.
5. Ladygin E.A., Murashev V.N. The INCA Project. I. Astrophysical Goals and the Concept of an Ionization-Neutron Calorimeter for Direct Investigation of Ultimate-Energy Electrons and Primary Cosmic-Ray. Nuclei up to the "Knee" Region. Salt Lake City.–In: 26 Int. Cosmic Ray Conference, USA, 1999, 17–25 August.
6. Ladygin E.A., Murashev V.N. The INCA Project. II. Measurements of the neutron yield from a lead absorber for neutron and proton projectiles. Salt Lake City.–In: 26 Int. Cosmic Ray Conference, USA, 1999, 17–25 August
7. Ladygin E.A., Murashev V.N. The INCA Project. III. New Method for Separation of Electrical Nitric and Hadron Cascades in Detection of Primary Electrons and Gamma-bays. Salt Lake City: – In: 26 Int. Cosmic Ray Conference, USA, 1999, 17–25 August.
8. Ladygin E.A., Murashev V.N. The INCA Project. New Approach to Measurement of Energy of Primary Protons and Nucle.:– In: Salt Lake City; 26 Int. Cosmic Ray Conference, USA, 1999, 17–25 August.
9. V.N. Murashev "A new silicon detector on the basis of bipolar structures" ISSN 1340-3745 ICCR-Report-464-2000-2, p. 65.–In: Studies of Nuclear Components in Energy Region of 1015-1016 eV. INCA Workshop at P.N. Lebedev Physical Institute, Moscow Institute for Cosmic Ray Research, University of Tokyo.
10. Пат. 2133524 РФ. Координатно-чувствительный детектор. Мурашев В.Н. и др. Приоритет от 29.07.1998.
11. Пат. 2197036 РФ. Координатно-чувствительный детектор релятивистских частиц/ Мурашев В.Н. и др. Приоритет от 13.09.2001.
12. Интегральная ячейка детектора излучений/ Мурашев В.Н. и др. Заявка на пат. 2002118855 от 17 июля 2002.