Пленочные конденсаторы приходят на смену электролитическим
Пленочные конденсаторы изготавливаются методом металлизации полимерной пленки диэлектрика. В применяемой компанией AVX технологии для обеспечения хорошего сцепления пленок полимер (полипропилен) перед металлизацией обрабатывается коронным разрядом. Тонкая металлическая (алюминиевая) пленка наносится методом вакуумного испарения при температуре камеры 1200°C и температуре полипропиленовой подложки от -25 до -35°C. Схема установки нанесения металлизации приведена на рис.1. При достаточно малой толщине металлическая пленка, находящаяся над дефектом диэлектрика, при прохождении тока испаряется, в результате чего дефектная область оказывается изолированной, т.е. происходит так называемое самозаживление компонента. Благодаря эффекту самозаживления и обеспечивается высокий градиент напряжения пленочных конденсаторов. Для современных конденсаторов компании AVX, изготавливаемых по полностью "сухой" технологии и предназначенных для разрядных устройств, градиент напряжения превышает 500 В/мкм и 250 В/мкм для конденсаторов фильтров постоянного тока.
Поскольку разрабатываемые конденсаторы соответствуют стандарту промышленности бытовой электронной техники CEI 1071, они способны выдерживать без существенного сокращения срока службы несколько выбросов напряжения, превышающих номинальное значение примерно в два раза. Пользователь при выборе компонента может принимать во внимание нужное номинальное напряжение конденсатора.
Электролитические конденсаторы
В электролитических конденсаторах в качестве диэлектрика используется окись алюминия, диэлектрическая постоянная которой составляет 8–8,5, а градиент напряжения – 0,07 В/А. Поэтому толщина диэлектрика конденсатора на напряжение постоянного тока 900 В должна составлять 12000 ангстрема, или 1,2 мкм. Однако такая толщина диэлектрической пленки для электролитических конденсаторов неприемлема. Это объясняется тем, что для получения требуемой удельной мощности конденсатора в пленке окиси алюминия вытравливаются ямки, формирующие ее микрорельеф, уровень которого зависит от толщины пленки диэлектрика. С увеличением толщины емкостной коэффициент, обусловленный микрорельефом диэлектрика, уменьшается. Это приводит к тому, что значение емкости конденсатора на напряжение 500 В вдвое меньше емкости низковольтного конденсатора. С другой стороны, проводимость электролита конденсатора на напряжение 500 В составляет 5 Ом/см против 150 Ом/см для конденсатора на низкое напряжение. В результате эффективное значение тока высоковольтного конденсатора не может превышать 20 мА/мкФ. По этим причинам максимальное номинальное напряжение электролитических конденсаторов составляет 500–600 В, и для получения требуемого высокого напряжения пользователь должен последовательно соединять несколько конденсаторов. А поскольку существует разброс значений сопротивления диэлектрика конденсаторов, пользователь для балансировки напряжения должен присоединить к каждому конденсатору резистор. При подаче обратного напряжения, в полтора раза превышающего номинальное значение, начинается химическая реакция, и, если это напряжение подается достаточно долго, конденсатор взрывается или вытекает электролит. Чтобы не допустить этого, пользователь вынужден присоединять к каждому конденсатору параллельный диод.
И наконец, рассмотрим наиболее важный для некоторых применений фактор – способность выдерживать выбросы напряжения. Максимально допустимое напряжение выброса электролитических конденсаторов составляет 1,15–1,2 от значения номинального напряжения постоянного тока. Поэтому пользователь при выборе электролитического конденсатора должен учитывать не его номинальное напряжение, а напряжение выброса.
Сравнение пленочных и электрических конденсаторов для различных областей применения
Конденсаторы на большие токи для фильтров цепи постоянного тока. Значения емкости и тока
Рассмотрим требования к конденсаторам, выполняющим функции развязки в цепи электрического транспортного средства с батарейным питанием (рис.2). Одно из основных требований к таким конденсаторам – способность выдерживать большие эффективные значения тока. А значит, для этой области применения пленочные конденсаторы весьма перспективны. Так, если для электрического транспортного средства требуется конденсатор на напряжение постоянного тока 120 В с допустимыми эффективными значениями пульсаций напряжения 4 В и эффективным значением тока 80 А на частоте 10 кГц, то минимальная емкость его составит:
...
Рассмотрим случай применения электролитического конденсатора. Если его предельное эффективное значение тока составляет 20 мА/мкФ, то для обеспечения тока 80 A его емкость должна составлять С = 80/0,02 = 4000 мкФ.
Теперь рассмотрим конденсатор, предназначенный для питаемого от сети драйвера мотора промышленного оборудования. Форма волны цепи развязки по постоянному току имеет вид, приведенный на рис.3. При расчете емкости следует учесть, что частота напряжения питания ниже частоты стабилизатора. Расчет емкости производится по следующей формуле:
...
где Pнаг – мощность в нагрузке; Uпульсаций – напряжение пульсаций; Fстаб – частота стабилизатора.
Для приблизительного расчета эффективного значения тока воспользуемся следующими формулами:
...
...
Таким образом, эффективный ток конденсатора Iэф зависит от мощности в нагрузке, максимального напряжения Umax и напряжения пульсаций Uпульсаций.
Рассмотрим конкретный пример расчета емкости и эффективного значения тока конденсатора на напряжение 1000 В и напряжение пульсаций 200 В. При мощности в нагрузке 1 МВт эффективный ток равен 2468 А, при 500 кВт – 1234 А и при 100 кВт – 247 А.
При сравнении с электролитическим конденсатором вспомним, что его предельный эффективный ток составляет 20 мА/мкФ. Как показали расчеты для пленочного конденсатора, эффективный ток при мощности в нагрузке 1 МВт равен 2468 А. Это значит, что емкость электролитического конденсатора должна составлять 123,4 мФ. Из кривой зависимости емкости от частоты стабилизатора, приведенной на рис.4, получим, что пленочный конденсатор с таким значением емкости нужен для стабилизатора на частоту менее 100 Гц. Частота трехфазного стабилизатора с шестью выпрямительными диодами составляет 300 Гц. Из рис.4 получим, что при мощности в нагрузке 1 МВт требуемая емкость пленочного конденсатора на такую частоту равна всего 18,5 мФ. При меньших значениях мощности в нагрузке требуемые емкости конденсатора еще меньше, и пленочная технология по-прежнему дает лучшее решение. Даже для стабилизатора на частоту 100 Гц емкость конденсатора не превышает 555 мкФ при неизменных значениях напряжения питания и напряжения пульсаций.
Конденсаторы фильтров постоянного тока.
Проблема выброса напряжения
Рассмотрим применение фильтров постоянного тока в таких городских транспортных средствах, как поезда метро, трамваи, тролейбусы и т.п. (рис.5). Форма волны напряжения в линии постоянного тока приведена на рис.6. При подводе мощности к составу контакт между токоприемником и контактным проводом не всегда непрерывен. В случае отсутствия контакта энергия поступает от конденсатора цепи постоянного тока, и при этом напряжение снижается. При восстановлении контакта происходит выброс напряжения:
... где
...
где Undc – номинальное постоянное напряжение; L – индуктивность фильтра; С – емкость фильтра; R – сопротивление фильтра.
Худшие условия возникают тогда, когда изменение напряжения DV равно напряжению контактного провода, поскольку при этом выброс напряжения в два раза превышает номинальное напряжение. Как было указано ранее, пленочные конденсаторы выдерживают такие перегрузки.
А что происходит при использовании электролитического конденсатора? Как уже указывалось, максимальная перегрузка, выдерживаемая электролитическим конденсатором, составляет 1,2 значения номинального напряжения. При номинальном напряжении 1000 В минимальный выброс напряжения, который должен выдержать электролитический конденсатор, будет равен 2·1000/1,2 В = 1670 В. Чтобы выдержать такой выброс напряжения, необходимо последовательно включить четыре конденсатора на напряжение 450 В.
Срок службы
Срок службы пленочных конденсаторов достаточно продолжителен и зависит от рабочего напряжения и температуры горячих точек (рис.7). Температура горячей точки в зависимости от области применения и технологии конденсатора лежит в пределах от 85 до 105°С. Продолжительность срока службы определяется периодом, в течение которого значение емкости уменьшается на 2%. Правда, это теоретическое значение срока службы, поскольку в тех случаях, когда допускается 5%-ное изменение емкости, конденсатор может применяться значительно дольше.
Пленочные конденсаторы компании AVX
Как уже указывалось, компания AVX успешно проводит программу разработки и производства пленочных конденсаторов. В конце 2005 года компания сообщила о расширении рабочих параметров пленочных конденсаторов средней мощности. Конденсаторы семейства FFVE с диэлектриком из не импрегнированного металлизированного полипропилена или полиэфира предназначены для применения в преобразователях топливных элементов, источниках бесперебойного электропитания, драйверах двигателей и источниках питания промышленных систем. Емкость конденсаторов семейства FFVE составляет 12–400 мкФ±10%, номинальное напряжение – 300–1900 В, напряжение, подаваемое при испытаниях на стойкость к выбросам напряжения, равно 1,5 Vndc в течение 10 c, диапазон рабочих температур – -40…105°С. Отличительный параметр конденсаторов семейства – малая паразитная индуктивность – 18–40 нГ.
Новинки
С развитием полупроводниковых приборов повышаются требования к уменьшению индуктивности рассеяния фильтров постоянного тока, с тем чтобы ограничить выбросы напряжения при соединении с полупроводниковыми приборами. И здесь вновь пленочная технология облегчает решение проблемы.
Специалистами компании AVX разработан конденсатор, который может непосредственно монтироваться на IGBT-модуль (рис.8). При разработке конденсатора учитывалось важное требование защиты от воздействия окружающей среды. Поскольку конденсатор предназначен для систем подачи энергии транспортным средствам, его срок службы при номинальных значениях параметров и условиях окружающей среды должен составлять 100 тыс. ч. Чтобы обеспечить такой срок службы, конденсатор монтируется в пластмассовый или алюминиевый корпус, герметически запаянный полиуретаном, обеспечивающим не только защиту от воздействия окружающей среды, но и выполнение требований стандартов огнеупорности подвижных железнодорожных составов NFF 16-101NFF и 16-102. К тому же герметизация полипропиленом позволяет использовать различные типы выводов, например, в виде медной пластины, отделенной от корпуса изолирующей прокладкой.
По пленочной технологии созданы и конденсаторы с менее длительными сроками службы, но большими значениями градиента напряжения, что позволяет увеличить плотность энергии. Специалистами компании определены законы старения конденсаторов и разработаны программные средства, позволяющие ответить на любой специальный запрос заказчика.
Кроме того, благодаря использованию специальной технологии значение паразитной индуктивности новых конденсаторов не превышает 10 нГ даже у конденсаторов большой емкости. В результате при подключении к IGBT-модулю уже не нужно применять развязывающий конденсатор, что удешевляет стоимость конструкции.
Таким образом, если применение требует небольших эффективных значений тока, большие емкости, отсутствие выбросов напряжения и подачи обратного напряжения, пленочные конденсаторы, по-видимому, не смогут конкурировать с электролитическими. Но если необходимы большие напряжения, высокий эффективный ток, стойкость к выбросам напряжения, высокий пиковый ток, пленочные конденсаторы, безусловно, лучший выбор.
III Специализированная выставка нанотехнологий и наноматериалов "NTМЕХ-2006"
За последние десятилетия в материаловедении сформировалось новое направление, связанное с получением и использованием веществ в наносостоянии (когда размер конденсированной фазы хотя бы в одном направлении уменьшается до сотен и единиц нанометров). Переход практически всех веществ в наносостояние существенным образом изменяет его характеристики: электрические, магнитные, оптические, механические, термические, биологические и др., что позволяет создавать принципиально новые функциональные материалы с уникальными потребительскими свойствами.
Научные исследования и прикладные разработки в области наноматериалов и технологий (частицы, материалы, устройства) могут стать в XXI веке ключевыми для всего научно-технического прогресса. Во всех промышленно развитых странах это направление в последние годы стало приоритетным, особенно в связи с развитием наноэлектроники и миниатюризации промышленных и бытовых приборов и устройств.
На сегодняшний день научные коллективы России обладают высоким потенциалом, позволяющим создать наукоемкие производства XXI века. Значительная часть разработок на уровне интеллектуального продукта может быть реализована в промышленности и обладает перспективами выхода на международный финансовый рынок.
Специализированная выставка нано- технологий и материалов "NТМЕХ" – единственная на сегодня выставка, охватывающая все аспекты нано- технологий и материалов – от постановки задач до технического воплощения и промышленного внедрения. Двухлетний опыт проведения мероприятия показал целесообразность проведения проблемно-ориентированных выставок, семинаров и конференций с участием ведущих ученых и специалистов органов государственной власти и промышленных предприятий города Москвы с целью выявления рыночной инвестиционной перспективности инновационных проектов по направлению "нанотехнологии и наноматериалы".
II Специализированная выставка нано- технологий и материалов "NTМЕХ-2005", которая в декабре прошлого года прошла в современном выставочном зале здания Правительства Москвы, занимала выставочную площадь 800 квадратных метров и насчитывала более 60 участников, среди которых академические научно-исследовательские и высшие учебные заведения и известные всему миру промышленные предприятия: Физико-технологический институт РАН, Институт проблем технологий микроэлектроники и особочистых материалов РАН, Институт общей и неорганической химии им. Н.С. Курнакова РАН, Институт физической химии РАН, Институт органической химии им. Н.Д. Зелинского РАН, Московский научно-исследовательский онкологический институт им. П.А. Герцена, ГНЦ РФ ГИРЕДМЕТ, Институт металлургии и материаловедения им. А.А. Байкова РАН, ФГУП ЭЗАН, ГНЦ РФ – физико-энергетический институт им. А.И. Лейпунского и ГУ НИИ Биомедицинской химии им. В.Н. Ореховича РАМН, Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН, МГУ им. М.В. Ломоносова и РХТУ им. Д.И. Менделеева, Московский энергетический институт (ТУ), Московский государственный институт стали и сплавов (ТУ), Научно-исследовательский центр по изучению свойств поверхности и вакуума "НИЦПВ", ЗАО "Нанотехнология МДТ", РНЦ "Курчатовский институт" и многие другие. Выставка вызвала широкий интерес не только у российских, но и у зарубежных специалистов. За время ее работы выставку посетило около 2500 специалистов, в том числе представители посольств Великобритании и Чили, представители научных кругов Китая, Северной Кореи, Чехии, Голландии, Америки, Италии.
С 5 по 7 декабря 2006 года в Универсальном выставочном зале здания Правительства Москвы (Новый Арбат, 36/9) пройдет III Специализированная выставка нанотехнологий и наноматериалов "NТМЕХ-2006". Организаторами мероприятия являются Департамент науки и промышленной политики города Москвы, Московский комитет по науке и технологиям и Компания МКМ ПРОФ.
Основными целями специализированной выставки являются: демонстрация уникальных достижений предприятий и научных коллективов в области нанотехнологий и наноматериалов, содействие их продвижению на международный рынок, расширение выпуска высокотехнологичной продукции и принципиально новых функциональных материалов с уникальными потребительскими свойствами; содействие внедрению нанотехнологий в различные области науки, техники и производства; установление деловых контактов, привлечение отечественных и зарубежных инвестиций в данный сектор высоких технологий, содействие формированию и реализации национальных и региональных программ по нанотехнологиям и наноматериалам.
III Специализированная выставка нано- технологий и материалов "NТМЕХ-2006" включает следующие тематические разделы:
· наноматериалы и нанотехнологии;
· технология и оборудование для производства наноматериалов;
· модули и оригинальные компоненты на основе наноматериалов;
· услуги в области нанотехнологий;
· наноматериалы для компонентов и микросистем;
· применение нанотехнологий в областях городского хозяйства;
· готовая продукция с использованием нанотехнологий и наноматериалов.
В рамках насыщенной деловой программы выставки пройдут мероприятия (круглые столы, презентации) по вопросам применения нанотехнологий и наноматериалов в различных отраслях, обзор сегодняшнего состояния и перспектив в области и нанотехнологий, и наноматериалов, а также обзор современного состояния и перспектив развития отрасли в России и за рубежом.
Учитывая огромный интерес к новому перспективному направлению инновационной деятельности, основой которого являются нанотехнологии и наноматериалы в промышленно развитых странах, а также наличие высоких достижений в данной области ученых России, приглашаем принять участие в III Специализированной выставке нанотехнологий и наноматериалов "NTМЕХ-2006" и ждем Вас на выставке и мероприятиях деловой программы.
Дирекция выставки:
Телефон/факс: (095) 502-19-38, 502-19-37, 775-17-20
www.mkmexpo.ru , e-mail: mkmprof@mail.ru