Наноиндустрия #5/2012
Н.Полещук, А.Асташонок, Л.Рубаник, С.Капитулец, Г.Жавнерко, И.Парибок, П.Фарния, И.Яминский
Нанотехнологические подходы для диагностики бактериально-вирусных инфекций
При персистентных инфекциях, когда количество продуцируемых в очаге воспаления патогенов ниже пороговой чувствительности стандартных методов диагностики, актуальна проблема обнаружения возбудителей. Для вирусных и бактериальных инфекций на одну сформированную, содержащую нуклеиновую кислоту (НК), частицу может продуцироваться до нескольких тысяч дефектных, не имеющих полноценного генома или вообще лишенных НК, частиц. В организме часто основные иммунопатологические процессы обуславливаются не НК, а белковыми компонентами, входящими в состав патогенов. Сложное строение вирусов и бактерий, когда одну НК экранирует до нескольких десятков тысяч белковых, полисахаридных и других соединений, указывает на возможность детектирования возбудителей по специфическим структурным элементам, формирующим капсид или поверхностную липопротеидную оболочку патогенов. Следует отметить, что фенотипические признаки микроорганизмов, обусловленные поверхностной укладкой антигенов часто связаны с их патогенностью. Это открывает новые возможности для изучения на молекулярном уровне бактериальных и вирусных агентов, особенно благодаря значительному прогрессу в развитии атомно-силовой микроскопии (АСМ).
Наноиндустрия #4/2012
Е.Горшкова, С.Плескова, Э.Михеева
Атомно-силовая микроскопия клеток крови человека
Атомно-силовая микроскопия (АСМ) используется для изучения свойств биологических объектов и позволяет решать широкий спектр задач. Исследования направлены на изучение влияния флуоресцентных наночастиц на морфологию и упругие свойства мембран клеток крови человека. Изучение нейтрофилов показало, что под воздействием наночастиц происходят изменения в их морфологии, снижается упругость мембраны, наблюдается образование атипичных псевдоподий. Исследования показывают, что наночастицы – токсичные для клеток крови и подтверждают, что АСМ удобны и адекватны для биологических исследований.
Наноиндустрия #3/2011
А.Толстова, А.Протопопова, И.Оферкин, М.Годзи
Компьютерное моделирование и данные атомно-силовой микроскопии
Одна из актуальных задач современной биофизики – изучение конформационных особенностей адсорбированных белковых структур in vitro. Экспериментальные методы не в состоянии в целом обеспечить требуемую точность исследований. Тем не менее, атомно-силовая микроскопия (АСМ) представляется наиболее перспективным методом для этих целей, прежде всего благодаря простоте и возможности визуализации широкого класса объектов.
Наноиндустрия #2/2011
В.Швец
Создание структур из оксида на поверхности графита
Развитие современной электроники требует постоянного уменьшения размеров создаваемых структур, одним из перспективных способов получения которых являются методы литографии с помощью атомно-силового микроскопа. Эти методы включают механическое индентирование поверхности, в том числе термомеханическое, манипуляцию отдельными молекулами, различные воздействия с помощью электрического поля: анодное окисление, испарение с поверхности, химическое осаждение вещества, изменение зарядов, создание микровзрывов и ударных волн [1]. Из них одним из первых был реализован метод локального анодного окисления (ЛАО), который в настоящее время изучается наиболее интенсивно.
Наноиндустрия #1/2011
Д.Багров, И.Яминский, О.Шабурова А.Феофанов, К.Шайтан.
Электросиловая микроскопия наноразмерных объектов
Электросиловая микроскопия (ЭСМ) – специальный режим атомно-силовой микроскопии (АСМ), позволяющий получать информацию о градиенте электрического поля над поверхностью образца, а также о величине и знаке локализованных на ней зарядов. ЭСМ может применяться для проверки качества контактов и поиска дефектов в электрических схемах, обнаружения связанных зарядов, чтения и записи информации посредством изменения расположения зарядов на поверхности. В данной работе режим ЭСМ использован для наблюдения особенностей отдельных наночастиц.
Наноиндустрия #6/2010
А.Сушко, Е.Завьялова, А.Копылов, И.Яминский.
Конформация фибриногена при адсорбции на различные подложки
Фибриноген – крупный (340 кДа) фибриллярный белок плазмы крови, играющий ключевую роль в процессе ее свертывания, состоящий из трех глобулярных доменов, связанных между собой участками альфа-спиралей, причем краевые домены белка несколько крупнее центрального. Фибриноген имеет довольно высокую концентрацию в крови (9 мкМ), он также способен быстро адсорбироваться на различные поверхности [1], что необходимо учитывать при разработке биосовместимых имплантатов.